
www.manaraa.com

Distributed System Contract Monitoring✩

Adrian Francalanza, Andrew Gauci, Gordon J. Pace
Department of Computer Science, University of Malta

Abstract

Runtime verification of distributed systems poses various challenges. A pivotal chal-
lenge is the choice of how to distribute the monitors themselves across the system. On
one hand, centralised monitoring may result in increased communication overhead and
information exposure across locations, while, on the other hand, systems with dynamic
topologies and properties are difficult to address using static monitor choreographies.
In this paper we present mDPɪ, a location-aware π-calculus extension for reasoning
about the distributed monitoring scenario. We also define numerous monitoring strate-
gies for a regular expression-based logic, including a novel approach in which moni-
tors migrate to ensure local monitoring. Finally, we present a number of results which
emerge from this formalism, justifying our approach.

Keywords: runtime verification, distributed systems, migrating monitors, π-calculus

1. Introduction

Distributed systems provide remote services, economise costs by sharing resources,
and improve scalability and dependability through replication. This current trend to-
wards system distribution brings forth new challenges to modelling and verification:
not only do distributed systems have to be more defensively developed to address new
potential points of failure in any of its (non-local) sub-components, but specifications
need to cater for additional information, such as locality of data and control. Moreover,
existing approaches to system analysis, from testing and debugging to runtime verifi-
cation and model checking, cannot be applied without substantial adaptation, because
of the constraints induced by the distributed nature of the systems under analysis. For
instance, in dynamic systems, where access to remote services may be discovered at
runtime, one cannot readily extract a closed system for analysis. Similarly, in the case
of service contract negotiation, the properties to be monitored may only be known at
runtime, meaning that a further degree of dynamicity is required.

Runtime verification1 is one way of addressing system dependability — by moni-

✩The research work disclosed in this publication is partially funded by the Strategic Educational Pathways
Scholarship Scheme (Malta). The scholarship is part financed by the European Union European Social Fund.

1The terms runtime verification, runtime monitoring or sometimes even simply monitoring have been
used in the literature. We will use these terms interchangeably in this paper.

Preprint submitted to Elsevier November 2, 2012

www.manaraa.com

toring the system’s behaviour at runtime and comparing it with its specification, thus
enabling the discovery of specification violations and possibly also triggering recov-
ery behaviour. In monolithic systems, where the system resides in a single location,
the verifying code typically consists of a new listening subsystem located in the same
address-space of the original system. However, in a distributed setting, the choice of
location of the verifier is crucial, since communication across locations is typically an
expensive operation, and may potentially lead to the exposure of sensitive information.
Decisions on the locality may also impact on the structure of the verifier. For instance,
in order to locally verify different parts of the specification, the verifying code may
need to be structured in such a manner so as to be broken down into parts and dis-
tributed across locations.

Various alternative solutions have been presented in the literature from fully or-
chestrated solutions, coordinated by a central monitor at a specific location, to chore-
ographed monitors, distributed upfront at different locations. Orchestration is simple
and may be adapted directly from the monitoring of monolithic systems. However, it
disregards locality of trace analysis, requiring such information to travel across possi-
bly untrusted media; this leads to increased network traffic across remote locations and
also unnecessary information exposure. Despite these drawbacks, its simplicity makes
it an appealing approach, e.g., in [1], where web-service compositions are monitored
in an orchestrated fashion. Choreography-based monitoring [2, 3, 4, 5, 6] can mitigate
orchestration limitations However, a characteristic shortcoming with choreography is
that local monitors have to be instrumented statically, before the analysis starts; this
inflexibility prohibits choreographed monitors from adequately dealing with dynamic
systems, where network locations come and go, and dynamic properties2.

In [7] we proposed a novel approach to distributed system monitoring centered
around runtime migration: monitors are installed locally but then allowed to migrate
from one location to another when the need arises. Since monitors can be located
where the immediate confidential traces reside, as in choreography-based approaches,
migrating monitors avoid unnecessary data exposure. Moreover, they can also migrate
to locations determined at runtime, enabling them to preserve local monitoring despite
dynamic topologies.

Although there is a substantial body of work on the use of runtime verification for
distributed systems e.g. [6, 8], much of the work revolves around tool development
and issues of efficiency. We are not aware of any major work attempting to address this
area from a more theoretical perspective, answering questions such as expressivity of
and equivalence between different monitoring approaches.

In this paper, we present a unified formal framework for studying different moni-
toring strategies for distributed systems, thereby allowing for their precise comparison
— showing for instance, that two monitoring strategies may produce monitors which
are distributed in different ways but behave in an equivalent manner; or that one mon-
itoring strategy exposes less information on global channels than another. We present
a location-aware calculus supporting explicit monitoring as a first class entity, whilst

2By dynamic properties, we refer to properties which are only known at runtime, such as contracts coming
with a service which is discovered and used by a system at runtime.

2

www.manaraa.com

internalising behavioural traces at the operational level of the calculus (as opposed
to a meta-level). In this paper, we focus on what the literature variably refers to as
asynchronous, offline or passive monitoring — in which the monitors check the traces
generated by the system asynchronrously, thus not inhibiting its progress. It is worth
noting, however, that the calculus we present can be used to model synchronous (also
called online or active) monitoring, in which the system does not proceed until the
monitor processes any event generated.

We show the expressivity of the calculus by using it to model different distributed
system monitoring strategies from the literature, including migrating monitoring [7].
We later show how behavioral contracts expressed using regular expressions can be au-
tomatically translated into monitors using different monitoring strategies. Finally, we
formally prove that (i) the various identified monitoring strategies are behaviourally
equivalent (up to the location of monitors); (ii) certain distributed monitoring ap-
proaches, including migrating monitors, are safe from eavesdropping in that they guar-
antee that trace analysis is always performed locally and thus do not broadcast logged
information beyond location borders.

This paper is an extended and revised version of [7] with proofs of the main results
and the following new contributions: (i) We present a revised labelled transition system
with a novel technique for dealing with partial traces, allowing us to work with with
open systems; (ii) We justify bisimulation equivalence by proving that it is a congru-
ence with respect to parallel composition (Theorem 1); (iii) We prove that the monitors
synthesised from a regular expression using orchestrated, choreographed and migrating
translations are equivalent (Theorems 2 and 3); and (iv) We prove that whereas orches-
trated translations require remote monitoring, choreographed and migrating monitor
translations do not incur such a penalty (Theorems 4 and 5).

The paper is organised as follows. In section 2, we outline the contract monitor-
ing strategies for distributed systems from the literature, as well as the novel migrating
monitor approach. We then present the monitoring distributed calculus mDPɪ in section
3.1, the semantics in section 3.2 and bisimulation proof techniques in section 3.4. The
calculus is used to model of monitoring contracts expressed as regular expressions in
section 4.1. This is followed by section 4.3, presenting formal comparisons between
different monitoring strategies. The work is discussed and compared to existing for-
malisations of distributed monitoring in section 5, finally concluding in section 6.

2. Approaches to Distributed System Monitoring

Distributed systems — made up of autonomous, concurrently executing sub-systems
communicating through message passing, each with its local memory — poses new
challenges to monitoring, which go beyond those posed by the monitoring of mono-
lithic systems. Cross-border interaction is typically an expensive operation and may
take place over an unsafe medium. Moreover, these systems are characterised by the
lack of a global clock when ordering events across location boundaries. Instead, each
sub-system admits a local clock, implying a level of asynchrony across locations. The
topology of such systems may sometimes change at runtime through the addition of
new subsystems or the communication of private channels. Most internet-based and

3

www.manaraa.com

service-oriented systems, peer-to-peer systems and Enterprise Service Bus architec-
tures [9] are instances of such systems.

These characteristics impinge on contract monitoring.3 For instance, the absence of
a global clock prohibits precise monitoring for consequentiality properties which refer
to behaviour in different locations [10]. From a monitoring perspective, not only is it
important that verification uses limited space and computational resources, but it is now
also important that the it does not induce an unreasonable communication overhead,
since doing so could disrupt the underlying system’s computation. Furthermore, dis-
tribution impacts on information locality; subsystem events may contain confidential
information which must not be exposed globally across unsafe mediums or locations,
thereby requiring local monitoring.

Whether monitored contracts are known at compile time or else become known at
runtime affects distributed monitoring. Static contracts, ones which are fully known at
compile time, are not always expressive enough for distributed systems with dynamic
topologies. Dynamic contracts — ones which are only discovered at runtime, or which
are only partially known at compile time — tend to be more appropriate for such sys-
tems. They are found, for instance, in intrusion detection [11], where suspicious user
behaviour is learnt at runtime, and in systems involving service discovery, where the
chosen service may come with a fixed or negotiated contract made known only upon
discovery.

2.1. Classifying Distributed System Monitoring Approaches
Various approaches have been proposed for monitoring of distributed systems; from

centralised architectures, to statically distributed monitoring approaches and, more re-
cently, the use of mobile monitors. In general, existing approaches for distributed sys-
tem monitoring can be broadly classified into two categories: orchestration-based or
choreography-based. Orchestration-based approaches relegate monitoring responsibil-
ity to a central monitor overhearing all necessary information, whereas choreography-
based approaches typically distribute monitoring across the subsystems. The main
difference between approaches lies in the flow of information; whereas orchestrated
approaches require trace information to flow to the (central) monitor, choreographed
monitoring requires the verification effort to gather the information across locations.
The choice of approach often depends on a number of factors, including the underlying
system characteristics, as well as the properties under consideration.

2.1.1. Orchestration
In an orchestrated approach, all monitoring is performed centrally, accessing the

data and control information from different locations. This centralisation of monitor-
ing facilitates the handling of dynamic contracts. The approach is depicted in Fig. 1
showing two sub-systems located at l and k, each producing a local trace of events

3Although the term contract has been used in different ways in the literature, in our case we consider
contracts to be specifications of the expected behaviour of the system, but which might be violated. This
possibility motivates the need for the monitoring of such properties or contracts.

4

www.manaraa.com

Figure 1: Orchestrated Monitoring

(T1,T2 and T3 respectively), subsequently analysed by monitors M1,M2,M3 from re-
mote location G (acting as a third sub-system). Shortcomings with this technique are
immediately apparent; the approach is susceptible to data exposure when contacts con-
cern private information, since local traces are transmitted across locations. Due to
the volume of trace information which has to be transmitted remotely for monitoring,
scaling up this scenario may also lead to a considerable increase in communication
overhead across locations. Finally, the architecture poses a security risk by exposing
the monitor as a central point of attack from which sensitive information can be tapped.
Nevertheless, an orchestrated monitoring approach can be suitable when dealing with
public information available on the communication medium. This approach is used
in [1], where pre-determined web-service compositions expressed through pre-BPMN
workflows are monitored in a statically orchestrated fashion. The use of a central mon-
itor is facilitated in this case by placing the monitor at the coordinating BPMN engine,
through which web-service interactions flow. The approach in [12] is similar, however
also supporting orchestrated verification for dynamic properties, by runtime verifying
contracts discovered on-the-fly.

2.1.2. Choreography
In contrast with orchestrated monitoring, choreography-based approaches push ver-

ification locally, as shown in Fig. 2. This scenario depicts three sub-systems at l, k and
h each generating local traces, with monitors M1, M2 placed at l, and M3 placed at
k. Monitors M2 and M3 eventually interact in order to synchronise the global mon-
itoring effort. The appeal of localising the monitoring effort is the potential minimi-
sation of data exposure and communication overhead. By verifying locally, we avoid
having to transmit trace information to a remote monitor. Moreover, communication
between localised monitors is typically less than that induced by the remote monitoring
through a central monitor. Choreography is however more complex to instrument, as
contracts need to be decomposed into coordinated local monitors. Furthermore, it is
more intrusive, by burdening the monitored subsystems with additional local compu-
tation, and is thus applicable only when the subsystems allow local instrumentation of
monitoring code. Statically choreographed monitors, i.e. localised monitors verifying
a pre-determined set of properties, are also instrumented upfront, which may lead to

5

www.manaraa.com

Figure 2: Choreographed Monitoring

redundant local instrumentation in the case of temporal dependencies in a contract; if
monitoring at location k is dependent on verification at location l, and the check at
l is never satisfied, upfront monitor instrumentation at k is never needed. Extensive
work has been done in static choreography-based monitoring [2, 3, 4, 5, 6], where
communication overhead is mitigated by breaking up contracts into parts which can be
monitored independently, synchronising between the monitors only when necessary.

2.1.3. Migrating Monitors

Figure 3: Choreographed Monitoring

An alternate approach to monitoring of distributed systems involves the use of mi-
grating monitors [7]. In this approach, monitors reside where the immediate confiden-
tial traces occur and migrate to other subsystems, possibly discovered at runtime, when
information from elsewhere is required i.e. on a by-need basis. This monitoring strat-
egy lends itself directly to dynamic topologies and contracts learnt at runtime. Fig. 3
depicts monitor M2, which starts at location l, and subsequently migrates to locations
k and h during its verification effort. The sequential nature of migration is exploited
in the process to extract a temporal order on events monitored across locations. The

6

www.manaraa.com

advantage with a migrating monitor approach is that dynamic contracts can be directly
handled, whilst still avoiding orchestration, and thus minimising data exposure. It is
for this reason that migrating monitors are considered a dynamic choreography-based
strategy.

Nevertheless, the added expressivity and intrusiveness of migrating monitors re-
quires a trust management infrastructure to ensure safe deployment of received mon-
itors. Various solutions can be applied towards this end, from monitors signed by a
trusted entity showing that they are the result of an approved contract negotiation pro-
cess, to proof-carrying monitors which come with a proof guaranteeing what resources
they access. Migrating monitors also burden locations with additional computation
by running locally, and are intrusive by requiring local instrumentation of monitoring
computation. Implementing migrating monitoring on an existing distributed system
would require access to the individual systems, and the ability to instrument event de-
tection and processing of contracts. The requirements of the instrumentation phase are
not unlike those faced in choreographed monitoring. Although not all architectures
may allow for migration of migrating processes, and even less so in a secure and safe
manner, this challenge can be addressed by passing the monitors across location bound-
aries encoded as data objects, and which are interpreted at the location where they are
to be evaluated. These issues will not be discussed further here, but are crucial for the
practicality of migrating monitors.

2.1.4. Comparing Monitoring Approaches for Distributed Systems
Although these approaches have been individually studied in the literature, their

formal comparison has not. There are a various issues relating to these different moni-
toring approaches that one would like to be able to formally resolve. For instance, how
does one show that two monitors, possibly using different deployment strategies are
equivalent, or that choreographed monitoring exposes less information on global chan-
nels than orchestrated monitoring? What is required is a common formal framework in
which different approaches can be expressed, compared and contrasted.

3. A Distributed Monitoring Language

mDPɪ is an extension and adaptation of the distributed π-calculus [13], with a notion
of (i) explicit locations to host processes; and (ii) monitors, a special form of processes
which can (in a non-interfering manner) eavesdrop on the communication taking place
on channels. In contrast to many forms of communication used in process calculi,
the communication taking place between processes in mDPɪ leaves a residue which
monitors may read at a later stage in a non-destructive manner.

3.1. The Syntax
In mDPɪ, parallel processes, P,Q,R ∈ Pʀ��, interact by communicating on chan-

nels, c, d, e, b ∈ Cʜ�ɴ�; they are distributed across a flat location structure where host-
ing locations, l, k,m ∈ L���, locally administer event trace generation. Local trace
generation yields totally ordered local traces but partially ordered global traces, remi-
niscent of tracing in distributed settings. Monitors, M,N ∈ M�ɴ, then asynchronously

7

www.manaraa.com

analyse these partially ordered traces to determine whether properties are broken. Sys-
tems, S ,U,V ∈ Sʏ�, range over networks of located processes and monitors.

S ,U,V ::= k�P� | k�T� | k{[M]}(l,i) | S � U | new c.S

P,Q,R ::= stop | u!w.P | u?x.P | new c.P | if u=w thenP elseQ | P�Q | ∗P
T ::= t(c,w, i)

M,N ::= stop | u!w.M | u?x.M | new c.M | if u=w then M else N | M �N | ∗M

| q(c, x).M | sync(u).M | go u.M | ok | fail

The syntax, summarised above, assumes denumerable sets of indices i, j, h ∈ I��
and variables x, y, z ∈ V�ʀ� apart from channels and locations, where identifiers u,w
range over I��ɴ�� = Cʜ�ɴ� ∪ L��� ∪ I�� ∪ V�ʀ�. Lists of identifiers w1, . . . ,wn are
denoted as w.

The main syntactic class is that of Systems, consisting of either located processes,
k�P�, located traces, k�T�, or located monitors, k{[M]}(l,i), that can be composed in
parallel, S �U, and are subject to scoping of channel names, new c.S . Every located
monitor carries a monitoring context, (l, i) keeping track of the current location, l, and
local position (index), i, of the trace being monitored.

3.1.1. Distributed Processes
Processes comprise standard π-calculus constructs [13] such as output, c!v.P where

value tuples v may include Cʜ�ɴ�∪L���∪ I��, and input, c?x.P, where variables x are
bound in the continuation P. Processes include other constructs such as name-matching
conditional, if u = w thenP elseQ, replication, ∗P, parallel composition, P � Q, and
name restriction, new c.P. We will sometimes elide stop and, for example, write c!v
for c!v.stop and if B then P for if B then P else stop respectively.

Example 1. Consider the system of processes below whereby processes (1) and (4) are
located at location l whereas processes (2) and (3) are located at location k.

Sys �
(1)����������������

l�d?x.x!1� �
(2)����������������

k�d!c.c!2� �
(3)������������������������

k�d!b.b?z.P� �
(4)��

l�c?y.if y=2 then Q1 else Q2�

As in the piCalculus, channels can be communicated as values over other channels in
mDPɪ systems. Process (1) is waiting for input on channel d and the value inputted, x,
is then used as a channel to output the value 1 on it.

Sys1 �

(5)����
l�c!1� �

(6)������
k�c!2� �

(3)������������������������
k�d!b.b?z.P� �

(4)��
l�c?y.if y=2 then Q1 else Q2�

Process (1) can receive this value from process (2), in which case the input variable,
x, will be instantiated to the channel name c and the entire system evolves to Sys1 above.
At this point the input on channel c in process (4) can non-deterministically react with
either the output of process (5), resulting in the system

Sys�1 � l�stop� � k�c!2� � k�d!b.b?z.P� � l�if 1=2 then Q1{1/y} else Q2{1/y}�

8

www.manaraa.com

or else the output of process (6), resulting in the system

Sys��1 � l�c!1� � k�stop� � k�d!b.b?z.P� � l�if 2=2 then Q1{2/y} else Q2{2/y}�

Since the values communicated by these outputs differ, the input variable y at (4) may
be instantiated at different values, i.e. either 1 or 2, which will in turn affect whether
this process will branch to Q1 or Q2.

Alternatively, in the original system Sys, process (1) may receive the input on chan-
nel d from process (3), in which case the input variable x will be instantiated to the
channel b and Sys will evolve to the system Sys�2, which clearly has a different be-
haviour from the former one.

Sys2 �

(7)������
l�b!1� �

(2)����������������
k�d!c.c!2� �

(8)������������
k�b?z.P� �

(4)��
l�c?y.if y=2 then Q1 else Q2�

In fact, the new derivative of process (1), i.e. process (7), can not communicate with
process (4) as in the case of Sys�1 above, but may instead communicate with the deriva-
tive of process (3), i.e., process (8), yielding the system:

Sys�2 � l�stop� � k�d!c.c!2� � k�P{1/z}� � l�c?y.if y=2 then Q1 else Q2�

3.1.2. Distributed Runtime Monitoring
The behaviour of such distributed systems is hard to analyse statically, due to the in-

herent non-deterministic nature of concurrent communication and the dynamic instan-
tiation of channel names, as may be apparent from Example 1. In this work we propose
how the behaviour of systems of located processes can be asynchronously monitored
and verified at runtime; runtime analysis has the advantage of only analysing the cur-
rent path of execution, thereby side-stepping a large number of problems associated
with state-explosion of concurrent system analysis.

The calculus describes distributed, event-based, asynchronous monitoring. Mon-
itoring is asynchronous because it happens in two phases, whereby the mechanism
for tracing is detached from that for trace-querying. This two-step setup closely re-
flects the limits imposed by a distributed setting and lends itself better to the modelling
of the various distributed monitoring mechanisms we want to capture. Monitoring is
event-based because we focus on recording and analysing discrete events involving
communication.

3.1.3. Distributed Traces
Traces, made up of individual trace records, t(c, v, i), record communication of

values v on channel c at timestamp i, and are meant to be ordered as a complete log
recording past process computation at a particular location. For simplicity, traces in
mDPɪ are limited to recording output events, but we conjecture that extensions to more
expressive traces recoding other forms of actions such as inputs and name comparisons
should be a straightforward task. Note that trace records are located, e.g., k�t(c, v, i)�
for some location k, and when they are composed in parallel, their syntactic order-
ing is not important, e.g., writing k�t(c, v, i)� � k�t(d,w, j)� is the same as writing
k�t(d,w, j)� � k�t(c, v, i)�, because parallel composition is commutative. Rather,

9

www.manaraa.com

what is important is the relative ordering of trace records located at the same location,
as dictated by their timestamp.

Example 2. Consider the system of four processes, discussed in Example 1. If we
consider the first sequence of computations possible, i.e. process (1) receiving the
value c on channel d from process (2), followed by a communication on channel c
between processes (1) and (4), then we obtain the trace

Trc1 � k�t(d, c, i)� � l�t(c, 1, j)�

whereas if we consider the communication between process (1) and process (2) on
channel d, followed by the communication between processes (2) and (4) on channel c
we obtain the trace

Trc2 � k�t(d, c, i)� � k�t(c, 2, i + 1)�

for some index values i and j.

We note two important aspects of our traces from Example 2. First, motivated by
implementation concerns, the recording of an output action as a trace entity occurs lo-
cally, e.g., t(d,c,i) is located at location k in Trc1, the location of the process performing
the output, even though the receiver resides at a different location l. Second, successive
output actions at the same location are ordered by the assigned index e.g., t(d,c,i) and
t(c,2,i+1) at k in Trc2. In contrast, temporally ordered actions that happen at differ-
ent locations, e.g., t(d,c,i) and t(c,1,j) in Trc, loose their ordering as they are assigned
unrelated indexes by their respective locations k and l, namely i and j.

3.1.4. Distributed Monitors
Monitors are autonomous computing entities similar in structure to processes, but

with additional capabilities for checking and verifying distributed process computation
through trace analysis. In a distributed setting, this amounts to a best-effort sound
reconstruction of distributed computation from the partial information recorded in the
local traces. In mDPɪ, monitors are allowed to perform this reconstruction from traces
(such as those in Example 2) through a trace-querying construct, q(c,x). M, and a
trace-realignment construct, sync(k). M; these two constructs embody our notion of
asynchronous distributed monitoring.

Although sound, our asynchronous monitoring mechanism of reconstructing tem-
poral order of events across locations is incomplete, and may miss out on detecting
property violations when compared to more precise mechanisms such as Vector Clocks
[14] and Lamport Timestamps [10]. These (more advanced) mechanisms however
come at the price of increased construct complexity while still not guaranteeing com-
pleteness (in practice) due to the limits inherent to distributed computing [10]. Given
that completeness is not a major concern for this study, we have opted for a construct
that is clearly implementable rather going for more expressive, albeit more complex,
constructs. In particular, the shortcomings of the constructs q(c,x). M and sync(k).M
do not unfavourably affect any particular distributed monitoring strategy we express in
our framework and therefore do not impact on the validity of the conclusions we reach
in section 4.

10

www.manaraa.com

The construct q(c,x).M queries traces for the first record describing communication
on channel c; the list of variables x are bound in the continuation M. The location, l,
and index, i, of the trace where the record is to be searched for are obtained from the
enclosing monitoring-context, (l, i), in a monitor located at k, k{[q(c, x).M]}(l,i). Traces
can be analysed either locally, when l = k or remotely, when l � k; this flexibility allows
us to express both orchestrated monitoring strategies, which require remote monitoring,
as well as choreographed strategies, which favour local monitoring. In order to permit
modular instrumentation of independent properties, mDPɪ allows multiple monitors
to analyse concurrently the same trace. Trace records are thus not consumed when
queried (unlike output messages); instead, every monitor keeps its own position in the
trace through the monitoring context.

Monitors can reconstruct a temporal ordering of events across remote traces (which
are temporally unrelated) using the realignment construct, sync(l).M. This construct
resets the monitoring context, (m, h), of a monitor k{[sync(l).M]}(m,h) to (l, i), where i is
the index to be assigned to the next generated trace record at location l; this allows the
monitor to start monitoring for records at l from the present state of the computation
onwards. As in the case of querying, monitor re-alignment can be performed both
locally, when l = k, as well as remotely, when l � k, which facilitates the encoding of
various distributed monitoring strategies.

Our framework permits the monitor allocation across locations to change over the
course of computation. In fact, as opposed to processes, monitors can also migrate
from their existing location to another location l using the construct go l.M. This, in
turn, allows us to express a wider variety of monitoring strategies such as the migrating
monitors strategy, discussed earlier in Section 2.1.3. The other remaining constructs
used exclusively by monitors are ok and fail, which allow monitors to report success or
failure respectively.

Example 3. Consider the property that prohibits outputting an integer that is less than
2 on some channel x at location l after this channel x had been earlier outputted as a
value on channel d at location k. Monitoring whether the system Sys from Example 1
violates this property can be carried out in a variety of ways:

Morch � m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i)

Mchor � new b.
�
k{[q(d, x). b!x]}(k,i) � l{[b?x. sync(l). q(x, y). if y < 2 then fail]}(l,h)

�

Mmig � k{[q(d, x).go l.sync(l).q(x, y).if y < 2 then fail]}(k,i)

Morch describes an orchestrated approach, analysing traces remotely from a central
(main) location m. Mchor is a choreographed monitor, split into two sub-monitors, each
analysing traces locally and communicating between them (on the scoped channel b)
when necessary. Finally, Mmig is a migrating monitor, which starts at location k, locally
eavesdropping on channel d, and then migrates to location l once an output on d is
recorded (and the channel communicated on d is known). Note that each monitor needs
to dynamically obtain the channel to query next on the trace at location l from the first
query performed on the trace at k, which means that the monitors need to reconstruct
this temporal ordering across located traces. When executed over the trace Trc1 all
three strategies should be able to raise the violation; they may nevertheless miss to

11

www.manaraa.com

raise this violation because local traces do not provide a total ordering of events — we
discuss this point at length in section 3.3. However, when monitoring the trace Trc2 the
monitors should never flag a violation.

There are various reasons why one monitoring strategy may be preferred over the
other. Morch is perhaps the easiest to construct and instrument; it is also the least in-
trusive as no monitors are instrumented at the location where the the monitored system
resides, i.e., the monitor resides at m whereas the monitored system is distributed across
l and k. On the other hand, Mchor is the option that generates the least amount of net-
work traffic by performing all its trace queries locally at l and k. Finally, Mmig, is able to
perform all its monitoring locally but is less intrusive than Mchor, since it only migrates
to l if a communication on d at k is observed.

A proper analysis of these different strategies requires us to formalise the behaviour
of these monitors first; this is the theme of the following section.

3.2. The Semantics of mDPɪ
The semantics of mDPɪ, is given in terms of a Labelled Transition System (LTS),

defined over the following action labels:

µ ∈ �A�� � inP(c, v) | (b)outP(c, v) (process input and output)
| inM(c, v) | (b)outM(c, v) (monitor input and output)
| inT(c, v, l, i) | (b)outT(c, v, l, i) (trace query and availability)
| τ | tick (internal and clock actions)

The different labels for both inputs and outputs allow us to discern whether the
action was performed by a process, monitor or trace. The first four labels denote the
capability of a process (respectively monitor) to input/output value tuples v on channel
c. As is standard for channel-passing calculi, the list of channel names (b) in the re-
spective output labels denotes bound names that have been scope extruded as a result of
the output. The label (b)outT(c, v, l, i) does not describe trace record consumption but
instead denotes the existence of an ith record in the trace at location l recording a pro-
cess’ output of values v on channel c (amongst which channel values (b) are scoped).
Dually, the label inT(c, v, l, i) describes a monitor’s capability to analyse the ith trace
record at location l recording a process’ output of values v on c; note that the location
of the monitor is not observable. All three output actions (b)outP(c, v), (b)outM(c, v)
and (b)outT(c, v, l, i) observe standard conditions such as, b ⊆ v, i.e., scope extruded
channels are indeed outputted values, and c � b, i.e., the channel on which the commu-
nication occurs is known to the receiver, and hence, not scoped. Finally, label τ denotes
the (standard) silent unobservable action, resulting from some internal computation or
interaction whereas tick denotes a local clock increment.

As usual, the respective input and output actions are allowed to synchronise with
one another in our LTS. To specify this, we describe when an output action is the co-

12

www.manaraa.com

action of an input action, i.e. when the labels match wrt. their parameters4:

inP(c, v) = outP(c, v) inM(c, v) = outM(c, v) inT(c, v, l, i) = outT(c, v, l, i)

3.2.1. Structural equivalence
As in [15, 13], we find it convenient to abstract over semantically equivalent sys-

tems with different syntactic representations. For instance, in our calculus parallel
composition is commutative and, as a result, we would expect the systems S 1 � S 2 and
S 2 � S 1 to denote the same system. We characterise this through the structural equiva-
lence relation, denoted by the symbol ≡, and defined as the least relation satisfying the
rules in Figure 4; we use fn(S) to denote the free names of S i.e. channel names that
are not bound by input prefixes and scoping.

�C��
S � U ≡ U � S

�A��
(S � U) � V ≡ S � (U � V)

�I�1
S � k�stop� ≡ S

�I�2
S � k{[stop]}(l,i) ≡ S

�Tʀ�
k�T� � k�T� ≡ k�T�

�E��
S � new c.U ≡ new c.(S � U)

c � fn(S) �S��1
new c.(k�stop�) ≡ k�stop�

�Fʟ�
new c.new d.U ≡ new d.new c.U

�S��2
new c.

�
k{[stop]}(l,i)� ≡ k{[stop]}(l,i)

�C��1
S ≡ U

S � V ≡ U � V
�C��2

S ≡ U

V � S ≡ V � U
�C��3

S ≡ U

new c.S ≡ new c.U

Figure 4: mDPɪ Structural Equivalence Rules

Most of the rules in Figure 4 are standard, such as the commutativity and associa-
tivity rules for parallel composition, �C�� and �A��. A slightly non-standard aspect
is that systems form a commutative monoid wrt. parallel composition and two forms
of ‘identity’ systems, namely inert located processes, k�stop�, or inert (located) mon-
itors, k{[stop]}(l,i), as described by �I�1 and �I�2. The channel scoping rules for extru-
sion, �E��, and swapping, �S��, are also standard, whereas unused scoped channels
can be discarded through either inert located processes or monitors, �S��1 and �S��2.
The only rule worth highlighting because it is peculiar to our calculus is �Tʀ�, which
allows identical trace records to be consolidated or, dually, replicated. This rule is in-
troduced for technical reasons that will be discussed in Sections 3.2.2 and 3.2.3, and
then Section 3.4. Finally, the inductive rules �C��1, �C��2 and �C��3 make structural
equivalence a congruence wrt. parallel compositions and scoping.

4Note that the co-action relation does not include output actions with bound names.

13

www.manaraa.com

3.2.2. Configurations
Our LTS is defined over systems subject to a local logical clock at each location.

These clocks permit (i) the generation of locally-ordered trace-records, and (ii) the re-
alignment of monitors to the current record timestamp in the local trace. Local clocks
are modelled as monotonically increasing counters and expressed as a partial function
δ ∈ Cʟ���� :: L��� � N, where δ(l) denotes the next timestamp to be assigned for a
trace entity generated at location l. We define a clock increment at a particular location,
say k, using standard function overriding,

inc(δ, k) = δ[k �→ (δ(k) + 1)].

Configurations, denoted as C,D ∈ C�ɴ� :: Cʟ���� × Sʏ�, are systems that are
subject to a set of localised counters, i.e. �δ, S � pairs where locs(S) ⊆ dom(δ); when
such a condition holds, we denote the pair as δ � S . We limit ourselves to well-formed
configurations whereby trace records form a local linear order at each location. For
this to happen, Definition 1 requires that (1) trace records are locally timestamped at
an index that is strictly less than the local counter that will be assigned to the next
trace record generated at that location and (2) trace records referring to the same local
timestamp (k, i) must agree on the recorded data.5

Definition 1 (Well-formed Configurations). A configuration δ � S is well-formed iff it
satisfies the following conditions:

1. S ≡ new c.
�
U � k�t(c,w, i)�

�
implies δ(k) > i;

2. S ≡ new b.
�
U � k�t(c,w, i)�

� ≡ new e.
�
V � k�t(d, v, i)�

�
implies c = d and v = w.

We note that Definition 1 does not require that, in a well-formed configuration
δ � S , all trace records for indexed less than δ(k), for arbitrary k ∈ dom(δ), are present
in S . We also note that Definition 1 does not enforce the existence of a single trace
record to be present for a particular timestamp either, but rather it permits replicated
trace records, as long as they record the same information. In fact, in what follows,
trace records are perhaps best envisaged as partial information relating to past perfor-
mance that must remain invariant across a configuration.

The reason for these relaxations is that we want our semantics to analyse configura-
tions in an open world setting, whereby results determined over local systems (such as
equivalences) are preserved in larger system contexts. Dually, these relaxations also al-
low for compositional analysis of configurations, whereby a configuration of the form
δ � (S 1 � S 2) can be analysed from its sub-configurations δ � S 1 and δ � S 2 (see
Theorem 1 in Section 3.4). In the meantime, however, note that missing or replicated
trace records do not affect the local linear recording of past outputs at a particular loca-
tion; moreover, replicated trace records can always be consolidated when considering
systems up to structural equivalence, using the rule �Tʀ� from Figure 4.

5The initial value of every local clock is not important, as long as it is larger than any trace record at that
location — its role is merely to order future trace records generated at that location.

14

www.manaraa.com

3.2.3. Transition rules
Our LTS is defined as the least ternary relation over configurations, −→:: C�ɴ� ×

�A�� × C�ɴ�, satisfying the rules in Figure 5, Figure 6 and Figure 7; we elide some
obvious process rules that can be inferred from the corresponding monitor rules (see
Figure 7). Transitions are denoted by the following notation:

δ � S
µ−−→ δ� � S � (1)

in lieu of �(δ � S), µ, (δ� � S �)� ∈ −→ and describe the computation step from the con-
figuration δ � S to the configuration δ� � S � as a result of some interaction with
the environment (some system context), characterised by the action µ. We note that
whenever we want to restrict our analysis to a ‘closed world’ setting, disallowing the
possibility of interacting with the environment, we simply restrict configuration transi-
tion labels to just the silent action, τ.

O��P
δ � k�c!v.P�

outP(c,v)−−−−−−−→ inc(δ, k) � k�P� � k�t(c, v, δ(k))�

O��M
δ � k{[c!v.M]}(l,i) outM(c,v)−−−−−−−−→ δ � k{[M]}(l,i)

O��T
δ � k�t(c, v, i)�

outT(c,v,k,i)−−−−−−−−−→ δ � k�t(c, v, i)�

IɴP
δ � l�c?x.P�

inP(c,v)−−−−−−→ δ � l�P{v/x}�

IɴM
δ � l{[c?x.M]}(k,i) inM(c,v)−−−−−−−→ δ � l{[M{v/x}]}(k,i)

IɴT
δ � l{[q(c, x).M]}(k,i) inT(c,v,k,i)−−−−−−−−→ δ � l{[M{v/x}]}(k,i+1) � k�t(c, v, i)�

δ(k) > i

S��
δ � l{[q(d, x).M]}(k,i) inT(c,v,k,i)−−−−−−−−→ δ � l{[q(d, x).M]}(k,i+1) � k�t(c, v, i)�

[c � d, δ(k) > i]

Figure 5: mDPɪ LTS external action rules

Figure 5 describes three output rules. The process output rule, O��P, is central to
our monitoring semantics. It differs from standard output rules in two respects; first,
it generates a residue trace record at the current location, k, after the output occurs,
k�t(c, v, δ(k))�, recording the channel name, c, and the values communicated on it, v,
timestamped by δ(k); second, it increments the clock at k once the trace record is gen-
erated, which is necessary so as to generate a total order on trace records at k. Monitor

15

www.manaraa.com

output, O��M, is similar albeit simpler since neither is a trace record generated, nor
is the local counter updated. Rule O��T models a trace record’s capability to expose
information relating to a process output at location k, outputting tuple v on channel
c at timestamp i. As opposed to process and monitor outputs, the trace record is not
consumed by the action (thereby acting as a broadcast), and its persistence allows for
multiple monitors to query it.

Figure 5 also describes three (main) input rules, one for each input label. The
rule for process input, IɴP, is standard: a process that resides at location l, can input
tuple v over channel c, substituting vi ∈ d for xi ∈ x in the continuation P. Note that
the location of the process plays no role in this action since process communication is
allowed to happen across locations. The rule for monitor output, IɴM, is similar; again,
the location, l, and the monitoring-context, (k, i), do not affect the monitor input.

The monitoring-context however plays a central role in a (successful) trace-query
action, IɴT. Here, the source location of the trace record, k, and time stamp, i, of
the action label, inT(c, v, k, i), must match those of current monitoring-context (k, i).
Since the transition describes the fact that a trace record has been matched by the
monitor query, the timestamp index of the monitoring-context is incremented, (k, i+1),
in order to progress to the next record in the local trace ordering. The trace-query action
can occur only if the corresponding trace record at (k, i) has already been generated:
this can be determined from the rule side-condition checking the clock counter at k,
i.e., δ(k) > i; if the side-condition is not satisfied then the query is blocked until the
local clock is incremented accordingly (see rule O��P). Rule IɴT leaves a residual
trace record, k�t(c, v, δ(k))�, in the resulting configuration; this should not be confused
with the trace record generation of O��P, but rather, it should be understood as the
generation of an invariant ensuring that all future queries of the local trace at (k, i)
consistently react with a trace record describing the output of values v on channel c.
Although this may appear somewhat intricate, this mechanism works in tandem with
the well-formed conditions of Definition 1 and turns out to be essential in a setting
where we want to perform compositional analysis — see example 8 in section 3.3. In a
setting where only part of the system is being analysed, the actual trace record may not
be part of the sub-system; the mechanism allows us to keep track of the trace record
data queried in the current sub-system, and then checked at the composition phase to
be consistent with the trace records generated (through rule O��P) in the other sub-
systems. We recall that when trace records correspond, they can be consolidated using
the structural rule �Tʀ� from Figure 4, which allows us to reconstruct the intuition
outlined earlier in Section 3.1.3 and Section 3.1.4 that there exists at most one trace
record for each located index (k, i) — see example 5.

The final transition rule in Figure 5 is S��, describing an unsuccessful trace-query
action. Here the monitor attempts to query the trace record at (k, i) for outputs on
channel d, and since the trace record queried happens to describe an output on some
other channel, c, the monitor query skips this record and proceeds up the chain to the
next index, (k, i + 1).6 The resulting configuration of this transition again generates a

6Interestingly, the transition action is the same for that of a successful action, namely inT(c, v, k, i), intu-
itively because it still denotes the interaction with a trace record k�t(c, v, δ(k))�, even though the query was

16

www.manaraa.com

residual trace record describing a system invariant, as in the case of the previous rule
ɪɴT; the motivation for this is the same as for ɪɴT, namely compositional analysis —
see example 5 and example 8 from section 3.3.

O�ɴ
δ � S

(b)α−−−−→ δ� � S �

δ � new b.S
(b,b)α−−−−−→ δ� � S �

[b ∈ �fn(α) \ obj(α)
�
, b � b]

S��
δ � S

µ−−→ δ� � S �

δ � new b.S
µ−−→ δ� � new b.S �

[b � fn(µ)]

P�ʀ
δ � S

µ−−→ δ� � S �

δ � S � U
µ−−→ δ� � S � � U

[bn(µ) ∩ fn(U) = ∅, µ � ɪɴT(c, v, k, i)]

P�ʀT
δ � S

inT(c,v,k,i)−−−−−−−−→ δ� � S �

δ � S � U
inT(c,v,k,i)−−−−−−−−→ δ� � S � � U

[�U�.U
(b)���T(d,w,k,i)−−−−−−−−−−→ U�]

C��
δ � S

(b)µ−−−−→ δ� � S � δ � U
µ−−→ δ � U�

δ � S � U
τ−−→ δ� � new b.(S � � U�)

[b ∩ fn(U) = ∅]

S�ʀ
S ≡ S � δ � S �

µ−−→ δ� � U� U� ≡ U

δ � S
µ−−→ δ� � U

Cɴ�ʀ
δ � S

tick−−−→ inc(δ, k) � S

Figure 6: mDPɪ LTS Contextual Rules

The first rules in Figure 6 are contextual rules, relating to the system contexts of
scoping and parallel composition. A subtle but important aspect of our calculus, dis-
tinct from related calculi such as [13], is that scope extrusion of channel names may
occur both directly, through process or monitor communication, but also indirectly
through trace querying. These three cases of scope extrusion are handled by the rule
O�ɴ which uses the action variable α to range over process, monitor and trace output
actions carrying no bound names:

α ∈ ���A�� � outP(c, v) | outM(c, v) | outT(c, v, l, i)

The rule uses two functions in its side condition: fn(α) returns the free names in an

unsuccessful.

17

www.manaraa.com

action as expected whereas

obj(outP(c, v)) = obj(outM(c, v)) = obj(outT(c, v, l, i)) = c.

Actions for scoped system that do not involve any extrusion of channel names are
handled by the rule S��.

Actions are preserved by systems in parallel, as stated in rule P�ʀ. The side-
condition, bn(µ) ∩ fn(U) = ∅, ensures that scope extruded channel names are fresh7;
since we assume terms up to α-equivalence of bound channel names, these names can
be assumed to be distinct from any free variables in the surrounding systems. The only
exception to this is the trace querying action, inT(c, v, k, i), which requires a further
condition stating that for the action to be preserved, systems composed in parallel with
it, U, must not be able to broadcast the existence of a trace record at (k, i). Other-
wise, when U contains the trace record queried for at (k, i), the system S is forced to
synchronise with this record in system U through the rule C��.

All three forms of communications — process, monitor and trace — are handled
uniformly by the communication rule C��. Communication occurs when configura-
tions δ � S , δ � U are capable of performing action µ and co-action µ respectively,
yielding a silent action τ as a result. Note that, by our definition of co-action, µ must
be a plain (not containing any bound names) output action, i.e., either outP(c, v) (pro-
cess output), outM(c, v) (monitor output) or outT(c, v, l, i) (trace broadcast), and may
therefore involve the scope extrusion of certain channel names, b, local to system S
emitting the output. The side-condition, b∩ fn(U) = ∅, ensures that the scope extruded
names are distinct from any free variables in the receiving system and, as a result of the
synchronisation, the scope of these names is extended to the residual system of U after
communication, i.e., U� in new b.(S � � U�). It is worth noting that action µ must be
an input action, and from the input rules that can generate this, i.e., IɴP, IɴM, IɴT and
S��, we can conclude that this action does not affect the system clocks δ in the residual
of the respective premise, δ � U�. On the other hand, when µ is a process output,
outP(c, v), the local clock of the location where the action occurs is incremented in the
residual system of the respective premise, δ� � S � (see O��P); this is then is reflected
in the resulting configuration for rule C��, δ� � new b.(S � � U�).

Rule S�ʀ in Figure 6 lifts transition to structurally equivalent systems. In particular,
this is important for our LTS in order to express symmetric rules for the parallel rules
P�ʀ, P�ʀT and C�� through structural rules such as �C��, �A�� and �E��, and to discard
remnant inert code and unused local channels through rules such as �I�1 and �S��1.
The last rule in Figure 6 is Cɴ�ʀ and models process communication by some system
context in an open world setting, that would increase the timestamp counter at the
location where the output occurred.

Example 4. Recall the system below from Example 1.

Sys � l�d?x.x!1� � k�d!c.c!2� � k�d!b.b?x.P� � l�c?y.if y=2 then Q1 else Q2�

7Analogous to fn(S), we write bn(S) to denote the bound names of S .

18

www.manaraa.com

When subject to the set of local clocks {l �→ j, k �→ i}, the semantics defined by the rules
in Figure 5 and Figure 6 allows us to express following behaviour:

{l �→ j, k �→ i} � Sys
τ−−→ {l �→ j, k �→ i+1} � Sys1 � k�t(d, c, i)�
τ−−→ {l �→ j+1, k �→ i+1} � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)�

The first τ-transition describes the process communication of the value c on channel d,
discussed in Example 1, where Sys1 was defined as

l�c!1� � k�c!2� � k�d!b.b?z.P� � l�c?y.if y=2 then Q1 else Q2�

This transition can be derived using the rules C��, IɴP and O��P (together with the
parallel composition rule P�ʀ and structural manipulation of terms using S�ʀ); see
derivation below where δ = {l �→ j, k �→ i}. In particular, rule O��P generates the
residual trace record k�t(d, c, i)� at location k, as discussed earlier in Example 2, while
incrementing the local clock at this location, k �→ i+1.

δ � k�d!c.c!2�
outP(d,c)−−−−−−→ inc(δ, k) � k�c!2� � k�t(d, c, i)�

O��P

······· δ � l�d?x.x!1�
inP(d,c)−−−−−→ δ � l�c!1�

IɴP

δ � k�d!c.c!2� � l�d?x.x!1�
τ−−→ inc(δ, k) � k�c!2� � k�t(d, c, i)� � l�c!1�

C��

δ � Sys
τ−−→ inc(δ, k) � Sys1 � k�t(d, c, i)�

P�ʀ, S�ʀ

The second τ-transition above describes the communication of value 1 on channel c
resulting in the system Sys�1, defined in Example 1 as

l�stop� � k�c!2� � k�d!b.b?z.P� � l�if 1=2 then Q1{1/y} else Q2{1/y}�.

This transition can also be derived using a combination of same rules just discussed,
this time incrementing the local clock at location l. It yields the global trace k�t(d, c, i)� �
l�t(c, 1, j)�, i.e., Trc1 from Example 2.

{l �→ j, k �→ i} � Sys
τ−−→ {l �→ j, k �→ i+1} � Sys1 � k�t(d, c, i)�
τ−−→ {l �→ j, k �→ i+2} � Sys��1 � k�t(d, c, i)� � k�t(c, 2, i+1)�

We can also derive a second transition sequence shown above where Sys��1 was defined
in Example 1 as the system

l�c!1� � k�stop� � k�d!b.b?z.P� � l�if 2=2 then Q1{2/y} else Q2{2/y}�,

and the residual trace generated, k�t(d, c, i)� � k�t(c, 2, i+1)�, is the one discussed in
Example 2, i.e., Trc2. Note that since this sequence of transitions describes two com-
munications where both outputs emanate from the same location, k, the trace records
generated are able to describe the relative order of the communication, i.e. from their
timestamps, k�t(d, c, i)� precedes k�t(c, 2, i+1)�.

19

www.manaraa.com

S�ʟ�M
δ � k{[M � N]}(l,i) τ−−→ δ � k{[M]}(l,i) � k{[N]}(l,i)

N��M
δ � k{[new c.M]}(l,i) τ−−→ δ � new c.

�
k{[M]}(l,i)�

E�M
δ � k{[if u=v then M else N]}(l,i) τ−−→ δ � k{[M]}(l,i)

[u = v]

N��M
δ � k{[if u=v then M else N]}(l,i) τ−−→ δ � k{[N]}(l,i)

[u � v]

R��M
δ � k{[M]}(l,i) µ−−→ δ � k�{[M�]}(m, j)

δ � k{[∗M]}(l,i) µ−−→ δ � k�{[M�]}(m, j) � k{[∗M]}(l,i)

Sʏɴ�
δ � k{[sync(l).M]}(h,i) τ−−→ δ � k{[M]}(l,δ(l))

G�
δ � k{[go l.M]}(h,i) τ−−→ δ � l{[M]}(h,i)

Figure 7: mDPɪ monitor LTS rules

The rules in Figure 7 describe the remaining monitor transitions; corresponding
process transitions such as process splitting and process branching follow the same
structure as the monitor rule counterpart, but are simpler as they do not have to cater
for the monitoring context — they are also very similar to those found in [13] and are
elided here. Most of the rules are self explanatory. The only rules worth noting are the
silent action described by rule Sʏɴ�, which allows monitors to realign with a trace at a
particular location to start monitoring for future trace records there, and rule G�, which
describes monitor migration as found in calculi such as [13]; presently, in order to keep
our framework as simple as possible, only monitors are allowed to migrate.8

Example 5. Recall the orchestrated monitor Morch from Example 3,

m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i)

verifying whether the monitored system violates a property by first outputting a chan-
nel name on channel d at k, followed by an integer output that is less than 2 on this

8Process migrating would have required traces to log this information as well, so as to enable accom-
panying monitors to trace the migration and thus move along with them. Although this enhancement could
have been accommodated by our framework, none of the monitoring strategies surveyed in Section 2 dealt
with migrating processes.

20

www.manaraa.com

channel at location l. When monitoring the system Sys from Example 4, subject to
δ = {l �→ j, k �→ i}, our semantics permits the following transition sequence:

δ � Sys � Morch

τ−−→ (δ� = inc(δ, k)) � Sys1 � k�t(d, c, i)� � Morch (2)
τ−−→ δ� � Sys1 � k�t(d, c, i)� � m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+1) (3)
τ−−→ δ� � Sys1 � k�t(d, c, i)� � m{[q(c, y). if y < 2 then fail]}(l, j) (4)
τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � m{[q(c, y). if y < 2 then fail]}(l, j) (5)
τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � m{[if 1 < 2 then fail]}(l, j+1) (6)
τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � m{[fail]}(l, j+1) (7)

Transitions (2) and (5) are those derived earlier in Example 4, except that now they are
derived in the context of a monitor using rule P�ʀ. These transitions are however now
interleaved with transitions from the orchestrated monitor’s side, Morch.

In particular, τ-transition (3) describes the querying of the trace at location k from
index i onwards for recorded outputs on channel d. A trace record matching the query
is immediately encountered at index i, namely k�t(d, c, i)�, and the successful reading of
this record is derived using the rules C�� (trace reading), O��T (trace broadcast) and
IɴT (trace query); this latter rule increments the monitoring context index to (k, i + 1).

δ� � k�t(d, c, i)�
outT(d,c,k,i)−−−−−−−−−→ δ� � k�t(d, c, i)�

O��T

······· δ� � Morch inT(d,c,k,i)−−−−−−−−−→ δ� � m{[sync(l). . . .]}(k,i+1) � k�t(d, c, i)�
IɴT

δ� � k�t(d, c, i)� � Morch τ−−→ δ� � k�t(d, c, i)� � m{[sync(l). . . .]}(k,i+1) � k�t(d, c, i)�
C��

δ� � k�t(d, c, i)� � Morch τ−−→ δ� � k�t(d, c, i)� � m{[sync(l). . . .]}(k,i+1)
S�ʀ

δ� � Sys1 � k�t(d, c, i)� � Morch τ−−→ δ� � Sys1 � k�t(d, c, i)� � m{[sync(l). . . .]}(k,i+1)
P�ʀ

The full derivation for the τ-transition (3) is given above and deserves some comment.
In particular, we note that trace querying generates duplicate trace records k�t(d, c, i)�
immediately after the rule C�� is applied; these can however be consolidated as one
record using rule S�ʀ and the structural equivalence rule �Tʀ� from Figure 4. Even
though this may seem redundant at first, it allows us to analyse subsystems in composi-
tional fashion. For instance, in the case of the right axiom in the above derivation, the
behaviour of Morch was analysed without requiring the trace record form timestamp i
at location k. In fact rule IɴT could have even allowed us to derive a different query,
say reading a different value v communicated on channel d:

δ� � Morch inT(d,v,k,i)−−−−−−−−−→ δ� � m{[sync(l). . . .]}(k,i+1) � k�t(d, v, i)�
IɴT

Note however how the label matching condition in rule C�� and the side condition in
rule P�ʀ prevent this from being derived for our full system, which in turn guarantees

21

www.manaraa.com

that the configuration remains well-formed. We discuss this issue in more depth in
section 3.3 — see example 8 and Lemma 1.

The silent transition (4) describes the realignment of the orchestrated monitor with
the trace at location l so as to start monitoring for future trace records there, and is
derived using rule Sʏɴ�. Transition (6) is another trace reading computation (this time
from the trace at location l) derived again using rules C��, O��T and IɴT, whereas
the final τ-transition, (7), is a branching operation (using a variant of the rule E�M.)

3.3. Calculus Expressivity
In this section we argue, though a series of examples, that the operational seman-

tics presented in section 3.2.3 captures the characteristic behaviour expected of asyn-
chronous monitoring systems executing in a distributed setting, which helps us to better
understand the situations that may arise when analysing existing monitoring strategies
or when designing new ones. In particular, we show how our calculus can model the
various distributed monitoring strategies discussed in section 2. We also discuss how,
despite all the intricate concurrent interleavings, the semantics still allows us to perform
compositional analysis focussing on particular subsystems.

An inherent aspect of asynchronous runtime verification is that violation checks
are only carried out on the current system execution. This means that an otherwise
erroneous concurrent system may produce an interleaved execution that does not yield
a violation, in which case no violation must be detected by the monitor. In such con-
current settings, runtime monitoring must also to contend with interleaved events from
other executions and must be able to skip trace entries that do not pertain to the prop-
erty being monitored. Distribution complicates monitoring even further, and may limit
detection capabilities across (asynchronous) locations.

Example 6. Recall again Morch from Example 3.

δ � Sys � k�c!5� � k�c?x.stop� � Morch

τ−−→ (δ� = inc(δ, k)) � Sys � k�t(c, 5, i)� � Morch (8)
τ−−→ (δ�� = inc(δ�, k)) � Sys1 � k�t(c, 5, i)� � k�t(d, c, i + 1)� � Morch (9)
τ−−→ δ�� �

�
Sys1 � k�t(c, 5, i)� � k�t(d, c, i + 1)�
� m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i+1)

�

(10)
τ−−→ δ�� �

�
Sys1 � k�t(c, 5, i)� � k�t(d, c, i + 1)�
� m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+2)

�
(11)

During monitoring , trace query matching need not be immediate, as shown in the
transition sequence above. Here Morch is instrumented over a slightly more complex
system that includes the subsystem k�c!5� � k�c?x.stop� apart from Sys; this larger
system may yield the altered trace

k�t(c, 5, i)� � k�t(d, c, i + 1)�

after two transitions, (8) and (9). In particular, the trace record describing communi-
cation on channel d is now assigned a later timestamp, namely i + 1. Thus the trace

22

www.manaraa.com

query from Morch for outputs on channel d at index i will not match the record at index
i, namely k�t(c, 5, i)�, since this record describes communication on channel c. As a
result, the monitor context of Morch is increase to i + 1 in transition (10) through a
combination of the rules C��, O��T and, most importantly, S��. At this point a query
can be matched as before, using C��, O��T and ɪɴT, (11).

δ � Sys � Morch

τ−−→ · τ−−→ · τ−−→ δ� � Sys1 � k�t(d, c, i)� � m{[q(c, y). if y < 2 then fail]}(l, j)
τ−−→ inc(δ�, l) � Sys��1 � k�t(d, c, i)� � l�t(c, 2, j)� � m{[q(c, y). if y < 2 then fail]}(l, j)

(12)
τ−−→ inc(δ�, l) � Sys��1 � k�t(d, c, i)� � l�t(c, 2, j)� � m{[if 2 < 2 then fail]}(l, j+1) (13)
τ−−→ inc(δ�, l) � Sys��1 � k�t(d, c, i)� � l�t(c, 2, j)� � m{[stop]}(l, j+1) (14)

As discussed in Example 4, system Sys is inherently non-deterministic, and after reach-
ing Sys1, it could transition to Sys��1 instead. This behaviour does not lead to a violation
of the property monitored by Morch and, accordingly, our transition semantics does not
allow the monitor to detect a violation. This is shown in the transitions (12), (13) and
(14) above, which can be derived using the same rules used to derive the corresponding
transitions (5), (6) and (7) above.

δ � Sys � Morch

τ−−→ (δ� = inc(δ, k)) � Sys2 � k�t(d, b, i)� � Morch

τ−−→ δ� � Sys2 � k�t(d, b, i)� � m{[sync(l). q(b, y). if y < 2 then fail]}(k,i+1) (15)
τ−−→ · τ−−→ · τ−−→ · τ−−→ inc(δ�, l) � Sys�2 � k�t(d, c, i)� � l�t(b, 1, j)� � m{[fail]}(l, j+1)

Another possible transition sequence for Sys is the one shown above, discussed earlier
in Example 1, transitioning through Sys2 reaching Sys�2 defined as:

Sys2 � l�b!1� � k�d!c.c!2� � k�b?z.P� � l�c?y.if y=2 then Q1 else Q2�
Sys�2 � l�stop� � k�d!c.c!2� � k�P{1/z}� � l�c?y.if y=2 then Q1 else Q2�

This time, the channel name communicated on channel d is b, not c, and subsequently,
the value 1 is outputted on channel b, as would be recorded in the residual trace.
Nevertheless, this alternative computation also violates the property monitored for by
Morch and accordingly, the transition sequence above shows how Morch can still detect
this violation. In particular, after the trace reading transition (15), the subsequent trace
query in Morch is set to channel b at l (as opposed to channel c in the previous case),
thereby adapting dynamically to the different trace analysis required.

We note that mDPɪ focuses on correct monitors (soundness), i.e. flagging viola-
tions only when these actually happen, rather than monitor precision (completeness),
i.e. guaranteeing detection whenever violation happens. As discussed earlier, the lack
of global clocks in distributed settings prohibit tight synchronisation across locations,

23

www.manaraa.com

forcing monitoring to be inherently asynchronous, i.e. trace generation and trace mon-
itoring are not in lock-step. Unfortunately, this limitation is inherent in distributed
settings [16].

δ � Sys � Morch

τ−−→ (δ� = inc(δ, k)) � Sys1 � k�t(d, c, i)� � Morch

τ−−→ δ� � Sys1 � k�t(d, c, i)� � m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+1)

τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � m{[sync(l).q(c, y). if y < 2. . .]}(k,i+1)

τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � m{[q(c, y). if y < 2 then fail]}(l, j+1)

For instance, in the case of the first transition sequence of Example 5, this allows for (4)
to potentially occur before (3) as shown above (or even before (2)). This yields a sit-
uation whereby, after synchronising with l, the monitor starts analysing the local trace
at location l at index j + 1, missing the trace event l�t(c, 1, j)� as a result. Even though
this may lead to the monitor not detecting a violation, this lack of precision is not a
limitation that is exclusive to our present model but is also an inherent characteristic of
distributed monitoring.

More importantly however, our semantics allows us also to derive similar transi-
tion sequences to the ones discussed for the orchestrated monitor instrumentation in
Example 5, but for the different monitoring strategies discussed earlier in Example 3.

Example 7. Recall the choreographed monitor, Mchor, defined earlier in as

new b.
�
k{[q(d, x). b!x]}(k,i) � l{[b?x. sync(l). q(x, y). if y < 2 then fail]}(l,h)

�
.

As can be shown below, this monitor can also detect the property violation discussed
earlier for Morch when the configuration δ � Sys transits to inc(inc(δ, k), l) � Sys�1. In
particular, transition (16), describing trace reading, is derived using the rules C��1,
O��T and IɴT as before, whereas transition (17), describing process communication,
is derived using the rules C��1, O��M and IɴM. Transition (18) describes trace align-
ment using rule Sʏɴ�. Finally (19) is another case of a trace reading transition, which

24

www.manaraa.com

is followed by monitor branching.

δ � Sys � Mchor τ−−→ (δ� = inc(δ, k)) � Sys1 � k�t(d, c, i)� � Morch

τ−−→ δ� �
�

Sys1 � k�t(d, c, i)� �
new b.

�
k{[b!c]}(k,i+1) � l{[b?x. sync(l). q(x, y). if y < 2 then fail]}(l,h)

�
�

(16)

τ−−→ δ� �
�

Sys1 � k�t(d, c, i)� �
new b.

�
k{[stop]}(k,i+1) � l{[sync(l). q(c, y). if y < 2 then fail]}(l,h)

�
�

(17)

τ−−→ δ� �
�

Sys1 � k�t(d, c, i)� �
new b.

�
k{[stop]}(k,i+1) � l{[q(c, y). if y < 2 then fail]}(l, j)

�
�

(18)

τ−−→ inc(δ�, l) �
�

Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� �
new b.

�
k{[stop]}(k,i+1) � l{[q(c, y). if y < 2 then fail]}(l, j)

�
�

τ−−→ inc(δ�, l) �
�

Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� �
new b.

�
k{[stop]}(k,i+1) � l{[if 1 < 2 then fail]}(l, j+1)

�
�

(19)

τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � new b.
�
k{[stop]}(k,i+1) � l{[fail]}(l, j+1)

�

The same transition sequence leading to a trace violation detection can be derived as
well if the configuration δ � Sys is instrumented with a migrating-monitor Mmig; we
recall that this monitor was defined earlier in Example 3 as

k{[q(d, x).go l.sync(l).q(x, y).if y < 2 then fail]}(k,i).

This transition sequence below looks very much like the one discussed earlier for the
orchestrated monitor instrumentation, Morch, in Example 5. Transition (20) describes
trace reading. Transition (21) is novel to what we discussed so far, and describes
monitor migration; it is derived using rule G�. This is followed by a trace realignment
transition, (22), a process communication, generating the record l�t(c, 1, j)�, followed
by a trace reading of this record, (23), and the final monitor branching leading to the
violation detection.

δ � Sys � Mmig τ−−→ (δ� = inc(δ, k)) � Sys1 � k�t(d, c, i)� � Mmig

τ−−→ δ� � Sys1 � k�t(d, c, i)� � k{[go l.sync(l).q(c, y).if y < 2 then fail]}(k,i+1) (20)
τ−−→ δ� � Sys1 � k�t(d, c, i)� � l{[sync(l).q(c, y).if y < 2 then fail]}(k,i+1) (21)
τ−−→ δ� � Sys1 � k�t(d, c, i)� � l{[q(c, y). if y < 2 then fail]}(l, j) (22)
τ−−→ · τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � l{[if 1 < 2 then fail]}(l, j+1) (23)
τ−−→ inc(δ�, l) � Sys�1 � k�t(d, c, i)� � l�t(c, 1, j)� � l{[fail]}(l, j+1)

It is worth noting that, in the transition sequences for both Mchor and Mmig shown
above, trace reading is always performed locally, as opposed to the transition sequence
for Morch. We also note how, in the case of Mmig, instrumentation at location l is only
carried out (through dynamic migration) on a by-need basis. In fact, if the query for

25

www.manaraa.com

outputs on channel d at location k is never satisfied, then no monitor is ever instru-
mented at location l.

It is important to highlight the fact that the formal analysis carried out so far was
performed under a closed world setting, i.e. we assume that the system being analyses
is the entire system under consideration. In fact, the transitions we considered were in
fact τ transitions, which correspond to more traditional reduction-based operational se-
mantics i.e. without any labels. Our semantics, however, allows us to perform a similar
analysis under an open world setting i.e. in the presence of other systems executing in
parallel. An open-world semantics allows us to analyse a system compositionally.

Example 8. Recall the (closed world) transition sequence (2) up to (7) from Example 5,
or even the sequence from (8) up to (11) from the same Example. Through external
actions, our semantics allows us to model such computation while abstracting away
from the system generating the corresponding localised traces (such as Sys � k�c!5� �
k�c?x.stop�), thereby focussing on the monitor code in isolation.

δ � Morch tick−−−→ (δ� = inc(δ, k)) � Morch (24)
tick−−−→ (δ�� = inc(δ, k)) � Morch (25)
inT(c,5,k,i)−−−−−−−−→ δ�� � k�t(c, 5, i)� � m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i+1) (26)
inT(d,c,k,i+1)−−−−−−−−−−→ δ�� �

�
k�t(c, 5, i)� � k�t(d, c, i + 1)�
� m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+2)

�
(27)

τ−−→ δ�� � k�t(c, 5, i)� � k�t(d, c, i + 1)� � m{[q(c, y). if y < 2 then fail]}(l, j) (28)
tick−−−→ inc(δ��, l) � k�t(c, 5, i)� � k�t(d, c, i + 1)� � m{[q(c, y). if y < 2. . .]}(l, j) (29)
inT(c,1,l, j)−−−−−−−−→ inc(δ��, l) �

�
k�t(c, 5, i)� � k�t(d, c, i + 1)� �� l�t(c, 1, j)�
� m{[if 1 < 2 then fail]}(l, j+1)

�
(30)

τ−−→ inc(δ��, l) � k�t(c, 5, i)� � k�t(d, c, i + 1)� � l�t(c, 1, j)� � m{[fail]}(l, j+1) (31)

The transition sequence above is one such example. Transitions (24) and (25), derived
using rule Cɴ�ʀ, model the effect of the corresponding process communication transi-
tions such as (8) and (9), performed by the system abstracted away by the open world
semantics. The trace records generated by these communications are then queried
through the external actions (26) and (27), derived using rules S�� and IɴT respec-
tively, which correspond to the τ-transitions (10) and (11) discussed earlier. We here
note how querying these trace records figuratively brings them in from the abstracted
context to form part of the system being analysed, i.e., the system being analysed is
now extended with the trace records k�t(c, 5, i)� and k�t(d, c, i + 1)�. Transition (28)
corresponds to (4) from Example 5 whereas (29) and (30) model the trace record gener-
ation and then the trace query computations described by (5) and (6) from Example 5.

26

www.manaraa.com

Finally (31) corresponds to (7), again from Example 5.

δ � Morch � Morch tick−−−→ · tick−−−→ (δ�� = inc(inc(δ, k), k)) � Morch � Morch

inT(c,5,k,i)−−−−−−−−→ δ�� �
�

k�t(c, 5, i)� � Morch

� m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i+1)

�

inT(d,c,k,i+1)−−−−−−−−−−→ δ�� �
�

k�t(c, 5, i)� � k�t(d, c, i + 1)� � Morch

� m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+2)

�
(32)

The reason why trace records are brought in as part of the system being analysed
becomes apparent from the example derivation above where two parallel copies of the
same monitor Morch are considered. An appropriate semantics should ensure that for
certain execution interleavings, the two monitors would reach the same verdict because
they query the same trace. The four transitions leading to (32) above correspond to the
earlier transitions (24) to (27). At this point, if the second copy of the monitor Morch

is to query the trace records from (k, i) onwards, it should not be able to query and
introduce records other than k�t(c, 5, i)� and k�t(d, c, i + 1)�. Accordingly, the side-
condition of rule P�ʀT from Figure 6 prevents us from using external trace querying
(through the rules S�� and IɴT), and any trace querying can only be derived using
C��, which forces the second copy of the monitor to react with the already present
internal trace records k�t(c, 5, i)� and k�t(d, c, i + 1)�.

3.4. Bisimulation-based Equivalences.
In this section we use the LTS defined in section 3.2.3 to define a notion of system

equivalence in an open-world setting. We then prove the main result of the section, The-
orem 1, which states that this equivalence is a congruence wrt. parallel composition,
and thus a sound equivalence proof technique for our open-world semantics. Before,
however, we prove an important sanity check of our LTS, namely that well-formed con-
figurations are preserved by the transition rules which guarantees that, starting from a
well-formed configuration, subsequent analysis is also made on well-formed configu-
rations.

Lemma 1 (Preservation of Well-formed Configurations). Given a well-formed config-
uration δ � S , and transition δ � S

µ−−→ δ� � S �, the resulting configuration δ� � S � is
also well-formed.

Proof. The proof proceeds by rule induction on the transition relation. We here con-
sider two cases.
O��P: We know S = k�c!v.P�, δ� = inc(δ, k) and S � = k�P� � k�t(c, v, δ(k))� for

some k, c and v. From the structure of S � we know that there is only one trace
record to consider, k�t(c, v, δ(k))�, and thus the second condition in Definition 1
is immediately satisfied. This trace record, k�t(c, v, δ(k))�, also satisfies the first
condition: from δ� = inc(δ, k) = δ[k �→ (δ(k)+ 1)] we know that the index of this
trace record, i.e., δ(k), is strictly less than δ�(k), i.e., δ(k) + 1.

C��: We know S = S 1 � S 2, S � = new b.(S �1 � S �2) with transitions

δ � S 1
(b)µ−−−−→ δ� � S �1 (33)

and δ � S 2
µ−−→ δ � S �2 (34)

27

www.manaraa.com

Given that δ � S 1 � S 2 is well-formed, then both δ � S 1 and δ � S 2 are also
well-formed, since removing S 1 or S 2 from δ � S 1 � S 2 cannot break any of
the conditions in Definition 1. By the inductive hypothesis, we hence infer that
δ� � S �1 and δ � S �2 are also well-formed. We have three subcases to consider:
• µ = inP(c, v): We know that µ = outP(c, v) and, by an appropriate sub-

lemma, from (33) we can conclude that δ� = inc(δ, k) for some k, and that
S �1 ≡ (b)(S ��1 � k�t(c, v, δ(k))�) where S ��1 has the same trace records as S 1;
this means that k�t(c, v, δ(k))� is the only new trace record generated. From
(34) and an appropriate sublemma we can also deduce that no new trace
records are generated in S �2 (apart from possible trace record replication
through the structural rule �Tʀ� which does not violate Definition 1). This
means that to ensure well-formedness for δ� � new b.(S �1 � S �2), we only
need to check that the conditions in Definition 1 are satisfied by the new
trace record generated, k�t(c, v, δ(k))�. Since δ � S 1 � S 2 is well-formed,
then by Definition 1(1), all trace records at k have indexes that are strictly
less than δ(k); this makes k�t(c, v, δ(k))� unique in δ� � new b.(S �1 � S �2),
thereby trivially satisfying Definition 1(2). Moreover, k�t(c, v, δ(k))� satis-
fies Definition 1(1), since δ� = inc(δ, k).
• µ = inM(c, v): Analogous to the previous case but simpler as it does not

involve the generation of new trace records. More precisely, we know that
δ� = δ and as a result the well-formedness of δ� � new b.(S �1 � S �2) follows
from that of δ � S 1 � S 2.

µ = inT(c, v, l, i): We know that µ = outT(c, v, l, i), which, by an appropriate sublemma, (33)
implies that δ� = δ and that S 1 ≡ (b)(S ��1 � l�t(c, v, i)�) ≡ S �1. From (34) and
an appropriate sublemma we know that S �2 ≡ (S ��2 � l�t(c, v, i)�) where S ��2
has the same trace records as S 2. This ensures that Definition 1(2) is satis-
fied by δ � new b.(S �1 � S �2). Moreover the satisfaction of Definition 1(1)
follows from the well-formedness of δ � S 1 � S 2.

�

Our LTS semantics for mDPɪ induces an intuitive definition of program equiva-
lences, centered around the concept of bisimulations [13]. We here opt for the most nat-
ural version, i.e. weak bisimulation, whereby silent actions, τ, are not considered visi-

ble; this definition relies on the concept of weak actions,
α̂
=⇒, action transitive closures

that abstract away from silent actions, defined as (
τ−−→)∗ if α = τ and (

τ−−→)∗· α−−→ ·(τ−−→)∗
otherwise.

Definition 2 (Bisimulation). A family of (binary) relation over systems, indexed by a
set of local clocks

�
δ∈Cʟ���� Rδ is said to be a bisimulation iff whenever S 1 Rδ S 2,

δ � S 1 and δ � S 2 are configurations, then:

• δ � S 1
α−−→ δ� � S �1 implies δ2 � S 2

α̂
=⇒ δ� � S �2 such that S �1 R�δ S �2;

• δ � S 2
α−−→ δ� � S �2 implies δ � S 1

α̂
=⇒ δ� � S �1 such that S �1 R�δ S �2

Bisimilarity, denoted as ≈, is the largest set of indexed relation satisfying Defi-
nition 2. It comes equipped with an elegant proof technique: in order to show that
two systems S 1 and S 2 are bisimilar with respect to the local clocks δ, denoted as

28

www.manaraa.com

δ |= S 1 ≈ S 2, i.e., the pair of systems �S 1, S 2� is included in the bisimilarity relation, ≈
at index δ, it suffices to give a family of relations that includes this pair at the relation
indexed by δ, and where this family of relations satisfies the transfer properties of Def-
inition 2. Since bisimilarity is the largest such set of indexed relations satisfying these
transfer properties, this implies that are S 1 and S 2 are bisimilar wrt. δ (see [15, 13] for
details).

It is easy to show that bisimilarity is an equivalence relation, i.e., it is reflexive,
symmetric and transitive. Importantly, we also prove contextuality, i.e. Theorem 1,
which states that whenever we prove that two configurations are bisimilar, they remain
so under larger (system) contexts. This theorem in effect ensures that bisimilarity is
a congruence (with respect to large systems) and justifies the use of bisimilarity as a
sensible behavioural equivalence. We use bisimulation as our touchstone equivalence
in the rest of the paper.

Theorem 1 (Contextuality). Under any context C :: Sʏ�→ Sʏ�, where δ � C(S 1) and
δ � C(S 2) are configurations:

δ |= S 1 ≈ S 2 implies δ |= C(S 1) ≈ C(S 2)

Proof. The proof is by coinduction. We define the family of relations
�
δ∈Cʟ���� R δ as

follows:

• δ |= S 1 ≈ S 2 implies �S 1, S 2� ∈ R δ
• �S 1, S 2� ∈ R δ and δ � (S 1 � S 3), δ � (S 2 � S 3) are configurations implies
�(S 1 � S 3), (S 2 � S 3)� ∈ R δ
• �S 1, S 2� ∈ R δ and δ � (S 3 � S 1), δ � (S 3 � S 1) are configurations implies
�(S 3 � S 1), (S 3 � S 2)� ∈ R δ
• �S 1, S 2� ∈ R δ implies �new c.S 1, new c.S 2� ∈ R δ

We then show that
�
δ∈Cʟ���� R δ satisfies the transfer property of Definition 2, which

would imply that
��
δ∈Cʟ���� R δ

� ⊆≈ and hence that, whenever δ |= S 1 ≈ S 2, it remains
so under larger system contexts.

We proceed by induction on how each R δ is defined. The base case, i.e. when
�S 1, S 2� ∈ R δ because δ |= S 1 ≈ S 2 is immediate. The other three cases are the
inductive cases where we here outline the proof for the more involving subcase of the
second case; the subcases for the third case are analogous whereas the subcases for the
fourth case are simpler.

We thus consider the case where �(S 1 � S 3), (S 2 � S 3)� ∈ R δ because

�S 1, S 2� ∈ R δ, (35)

and consider the case where

δ � S 1 � S 3
α−→ δ� � S 4 (36)

We are required to show that there exists a transition δ � S 2 � S 3
α̂
=⇒ δ� � S 5 such

that S 4 R δ� S 5. By case analysis and the structure of the configuration δ � S 1 � S 3,
we know that (36) could have been generated using the rules C��1 (or its dual C��2),
P�ʀ1 (or its dual P�ʀ2), P�ʀT1 (or its dual P�ʀT2), or else S��1 (or its dual S��2). We

29

www.manaraa.com

here consider the case when (36) was inferred using rule C��1; the other cases are
analogous. From C��1, we know (36) takes the form

δ � S 1 � S 3
τ−→ δ� � new b.(S1

� � S3
�) s.t. b ∩ fn(S �3) = ∅ (37)

because

δ � S 1
α−−→ δ� � S1

� (38)

δ � S 3
α−−→ δ � S3

� (39)

Now by (35), (38) and the inductive hypothesis, we can infer a matching transition
from δ � S 2, i.e.,

δ � S 2
α
=⇒ δ� � S2

� (40)
s.t. S �1 R δ� S2

�. (41)

Thus, from (40), (39) and C��1 we infer transition

δ2 � S 2 � S 3
τ
=⇒ δ�2 � new b.(S2

� � S3
�)

which is the required matching move. Finally, from (41) we obtain

new b.(S1
� � S3

�) R δ� new b.(S2
� � S3

�)

by the second and fourth clauses of the definition of R δ. �

Apart from justifying bisimulation as a sensible equivalence relation for our terms,
Theorem 1 implies that bisimulation admits compositional analysis. In fact, this the-
orem allows us to abstract away from common code when exhibiting bisimulations.
More precisely, to show that two configurations δ1 � S 1 � S 3 and δ1 � S 2 � S 3 are
bisimilar, it suffices to provide a relation including the pair �δ1 � S 1 � S 3, δ1 � S 2 �
S 3� without considering the common sub-system S 3. We will take advantage of these
compositional properties when proving bisimulations in Section 4.3.

Example 9. We can show that the monitors Morch and Mchor, defined earlier in Exam-
ple 3, when monitoring the system Sys, defined in Example 1, subject to the local clocks
δ = {l �→ j, k �→ i}, are bisimilar:

δ |= (Sys � Morch) ≈ (Sys � Mchor)

Moreover, by Theorem 1, in order to show this it suffices to show:

δ |= Morch ≈ Mchor

This can be shown by giving a concrete bisimulation.

In general, constructing concrete bisimulation relations for particular cases can be a
tedious task. However, the contextuality result of Theorem 1 allows us to reason about
monitors by decomposing them into parts. In practice, one usually has compositional
ways of synthesising monitors from a logic formula. The contextuality of bisimulation
lends itself directly to proving properties about a general synthesis approach as we will
show in the next section.

30

www.manaraa.com

4. Comparing Monitoring Strategies

mDPɪ provides us with mathematical tools enabling us to reason about monitoring
of systems. As we have seen in example 3, one can express monitors instrumented in
different ways and also to reason about their observational equivalence, despite syntac-
tic and structural differences. Typically, in runtime verification, one expresses proper-
ties to be monitored in a logic which is then instrumented on the system in whichever
way best suits the setting. In general, a property may thus be translated into different
monitors — depending on how one would like the monitoring to take place. Cor-
rectness of the instrumentation processes corresponds to saying that starting from any
property expressible in the logic, different instrumentations would give observationally
equivalent results.

In this section we illustrate this use of mDPɪ to prove that three different instru-
mentation strategies for a regular-expression based logic give observationally equiva-
lent results. Furthermore, we also use the calculus, but taking location into account to
show that certain instrumentation strategies ensure that monitoring is always performed
locally. It should be emphasised that the choice of regular expressions to specify prop-
erties is an arbitrary one, and similar results can be shown for other logics.

4.1. Regular Expressions for Monitoring
A regular-expression based logic is used to express properties to be monitored.

Well-formed expressions in the logic range over the following syntax:

E, F ∈ R�ɢE�� ::= (c, v)@k | (c,∃x)@k.E | E + F | E∗ | E.F

Standard regular expression combinators are adopted, with union over two expressions
being written as E + F, repetition as E∗ and sequentiality as E.F. The basic compo-
nent (c, v)@k matches when value v is passed over channel c emanating from location k,
while (c,∃x)@k.E matches any communication over channel c from location k, binding
the value to variables x in the regular expression E. Any communication not match-
ing the regular expression is ignored when matching. For example, the regular ex-
pression (a, 7)@l.(b, 8)@l matches communication traces such as �(a, 7)@l, (b, 8)@l�,
�(a, 7)@l, (c, 7)@l, (b, 8)@l� and �(a, 7)@l, (a, 7)@l, (b, 8)@l�— a trace matches if
and only if terminates with (b, 8)@l and includes an earlier (a, 7)@l. We use regular
expressions to specify counterexamples in the logic — any trace matching with the
regular expression is considered to be a violation.

Example 10. Despite its simplicity, the logic is sufficiently expressive for many useful
properties. Consider the property, which states that: “If an alarm is raised (a message
is sent on channel alarm) from either location k1 or k2, then no further messages should
be sent from location k0 on channel pvt”. This can be written as: ((alarm, ��)@k1 +
(alarm, ��)@k2).(pvt, ��)@k0. For simplicity, we use dataless communication, but this
can easily be extended using the binding match operator.

Now consider the property: “Data passed over channel c emanating from location
k may not repeat values”. This can be expressed using the binding match operator as
the regular expression: (c,∃x)@k. (c, x)@k. Similarly, the operator can be used to rea-
son about systems with dynamic topologies e.g. (c,∃badloc)@mng.(sys, ��)@badloc

31

www.manaraa.com

would monitor whether the system channel can be accessed from locations which have
been reported as bad by the manager at location mng.

4.2. Monitoring of Regular Expressions
We will now look at different ways of instrumenting an mDPɪ monitor from a reg-

ular expression, which we can then compare for observational equivalence. Unlike
existing work on runtime verification with regular expressions for monolithic systems
such as [17], we will provide different ways of synthesising a monitor depending on
the monitoring strategy we choose to adopt.

4.2.1. Orchestrated Monitoring
Orchestrated monitoring of a regular expression places all the listening components

in a central location, combining the information coming from different locations to try
to match the expression.

Consider the continuation-based compilation function compile : R�ɢE�� ×M�ɴ→
M�ɴ, where compile(E,M) is an mDPɪ term describing the monitor which, after match-
ing expression E behaves as mDPɪ term M:

compileO :: R�ɢE�� × M�ɴ → M�ɴ
compileO((c, v)@k,M) � read((c, v)@k,M)

compileO((c,∃x)@k.E,M) � sync(k).new d.
�
d! � ∗d?.q(c, x).(compileO(E,M) � d!)

�

compileO(E + F,M) � new d.
�
compileO(E, d!) � compileO(F, d!) � ∗d?.M

�

compileO(E∗,M) � new b, d.
�
(∗d?.compileO(E, b!)) � (∗b?.(d! � M)) � b!

�

compileO(E.F,M) � compileO(E, compileO(F,M))

Sequential composition E.F corresponds directly to a continuation, while the bind-
ing operator is a combination of the base case and sequential composition, exploiting
the binding and substitution associated with querying to instantiate free variables x
in the continuation compileO(E,M) with the values obtained dynamically from the
trace. Choice E + F adds a listener to identify whether E and F has terminated
before triggering the continuation. A mathematically equivalent way of expressing
compileO(E + F,M) is as compileO(E,M) � compileO(F,M). However, we chose this
description since it explicitly refers to a single instance of the continuation monitor,
and is therefore closer to the intended implementation. Repetition E∗ also adds piping
to trigger the continuation repeatedly.

The case of (c, v)@k is defined exclusively in terms of read((c, v)@k,M), which
waits for value v over channel c in location k before triggering the continuation M, and
is defined as follows:

read((c, v)@k,M) � sync(k).new d.(d! � ∗d?.(q(c, x).if x = v then (M � d!) else d!))

We can now define the orchestrated monitor of expression E monitorO(E) using compileO
with a failing continuation to ensure violation whenever the expression is matched,
and starting at an arbitrary (central) location h; the monitor resides in this location h
throughout its entire lifetime. The definition is given below:

monitorO(E) � h{[compileO(E, fail)]}(h,1)

32

www.manaraa.com

Example 11. Consider the example seen earlier with ensuring that once a bad location
has been identified by a manager process, it is not used to send a system message: E �
(c,∃badloc)@mng.(sys, ��)@badloc. A centralised monitor for E can be calculated as
follows:

monitorO(E)
= h{[compileO(E, fail)]}(h,1)

= h{[compileO((c,∃badloc)@mng.(sys, ��)@badloc, fail)]}(h,1)

= h{[sync(mng).new d.
�
d! � ∗d?.q(c, badloc).(compileO((sys, ��)@badloc, fail) � d!)

�
]}(h,1)

= h{[sync(mng).new d.
�
d! � ∗d?.q(c, badloc).(read((sys, ��)@badloc, fail) � d!)

�
]}(h,1)

4.2.2. Migrating Monitors
As discussed in section 2.1.3, instead of listening from a central location, an alter-

native is to migrate the monitoring code to the location where the next event is expected
to occur. As in the case of orchestrated monitoring, we start by defining a continuation-
based migrating monitor:

compileM :: R�ɢE�� × M�ɴ → M�ɴ
compileM((c, v)@k,M) � go k.read((c, v)@k,M)

compileM((c,∃x)@k.E,M) � go k.sync(k).new d.
�
d! � ∗d?.q(c, x).(compileM(E,M) � d!)

�

compileM(E + F,M) � new d.
�
compileM(E, d!) � compileM(F, d!) � ∗d?.M

�

compileM(E∗,M) � new b, d.
�
(∗d?.compileM(E, b!)) � (∗b?.(d! � M)) � b!

�

compileM(E.F,M) � compileM(E, compileM(F,M))

The schemata follow those used for orchestrated monitoring, but differ for the base
cases of the definition: whenever a channel communication is to be monitored via
(c, v)@k or (c,∃x)@k.E, the monitor first migrates to location k where the trace query
is to take place (followed by a synchronisation to that location), thereby guaranteeing
that monitoring is always performed locally.

As before, we can now define the complete monitor by using a failing continuation
to mark violations:

monitorM(E) � k{[compileM(E, fail)]}(k,1)

Example 12. Once again, we will use the example disallowing system messages from
a bad location identified at runtime: E � (c,∃badloc)@mng.(sys, ��)@badloc. A mi-
grating monitor can be calculated as:

monitorM(E)
= k{[compileM(E, fail)]}(k,1)

= k{[compileM((c,∃badloc)@mng.(sys, ��)@badloc, fail)]}(k,1)

= k{[go mng.sync(mng).new d.�
d! � ∗d?.q(c, badloc).(compileM((sys, ��)@badloc, fail) � d!)

�
]}(k,1)

= k{[go mng.sync(mng).new d.�
d! � ∗d?.q(c, badloc).(go badloc.read((sys, ��)@badloc, fail) � d!)

�
]}(k,1)

Note that the only difference between this and orchestrated monitoring, is that the
monitor migrates to the location where the communication will take place before eaves-
dropping.

33

www.manaraa.com

Figure 8: Compiling E.F, E + F and E∗ (respectively).

4.2.3. Static Choreography
The third option for instrumenting a monitor for a regular expression is that of a

choreographed approach — statically breaking the property down into communicating
components each of which resides in the location where the monitored communication
is to take place. The compilation decomposes the monitor into parallel components,
resulting in a compilation strategy not unlike standard approaches used in hardware
compilation of regular expressions e.g. [18]. As typically done in these approaches,
we use two additional channels: b and e, with b signalling when to begin matching the
regular expression, and e, signalling the end of a match with the regular expression. The
resulting structure of the compilation follows the pattern shown in the block diagrams
of Figure 8.

The compilation scheme is a function of the form compileb→e
C (E), with b and e

being the begin and end channels:

compileC :: Cʜ�ɴ� × Cʜ�ɴ� × R�ɢE�� × M�ɴ → M�ɴ
compileb→e

C ((c, v)@k) � k{[∗b?.read((c, v)@k, e!)]}(k,1)

compileb→e
C (E.F) � new d.

�
compileb→d

C (E) � compiled→e
C (F)

�

compileb→e
C (E + F) � new c, d.

�
compilec→e

C (E) � compiled→e
C (F) � h{[∗b?.(c! � d!)]}(h,1)

�

compileb→e
C (E∗) � new c, d.

�
compilec→d

C (E) � h{[(∗d?.(c! � e!)) � (∗b?.d!)]}(h,1)
�

For simplicity, all additional machinery used to synchronise the monitors is placed at an
arbitrary location h, although this could be changed without affecting the proofs in the
coming sections, given that this code does not involve any tracing. Also note, that due
to the static nature of the monitoring approach, properties discovered at runtime and
dynamic locations cannot be handled locally and thus the binding operator (c,∃x)@k.E
is not supported.

The installation of a choreographed monitoring of expression E can be expressed
in terms of compileb→e

C (E) by triggering the monitor right at the start, and failing upon
a match:

monitorC(E) � new b, e.
�
compileb→e

C (E) � h{[b! � ∗e?.fail]}(h,1)
�

Example 13. Consider the property: E � ((alarm, ��)@k1+(alarm, ��)@k2).(pvt, ��)@k0.
Compiling E will result in three monitoring components located at k0, k1 and k2 with

34

www.manaraa.com

additional communication handling processes which can be placed at any location h:

monitorC(E)
= new b, e.

�
compileb→e

C (E) � h{[b! � ∗e?.fail]}(h,1)
�

= new b, e.
�
compileb→e

C (((alarm, ��)@k1 + (alarm, ��)@k2).(pvt, ��)@k0) � h{[b! � ∗e?.fail]}(h,1)
�

= new b, e.

new d0.

compileb→d0
C (((alarm, ��)@k1 + (alarm, ��)@k2)) �

compiled0→e
C ((pvt, ��)@k0)

�

h{[b! � ∗e?.fail]}(h,1)

= new b, e.

new d0.

new d1, d2.

compiled1→d0
C ((alarm, ��)@k1) �

compiled2→d0
C ((alarm, ��)@k2) �

h{[∗b?.(d1! � d2!)]}(h,1)

�

compiled0→e
C ((pvt, ��)@k0)

�

h{[b! � ∗e?.fail]}(h,1)

= new b, e.

new d0.

new d1, d2.
k1{[∗d1?.read((alarm, ��)@k1, d0!)]}(k1 ,1) �
k2{[∗d2?.read((alarm, ��)@k2, d0!)]}(k2 ,1) �
h{[∗b?.(d1! � d2!)]}(h,1)

�

k0{[∗d0?.read((pvt, ��)@k0, e!)]}(k0 ,1)

�

h{[b! � ∗e?.fail]}(h,1)

Pushing the channel declarations to the top level and reorganising, the monitor is thus:

new b, e, d0, d1, d2.
k0{[∗d0?.read((pvt, ��)@k0, e!)]}(k0,1) �
k1{[∗d1?.read((alarm, ��)@k1, d0!)]}(k1,1) �
k2{[∗d2?.read((alarm, ��)@k2, d0!)]}(k2,1) �
h{[∗b?.(d1! � d2!)]}(h,1) �
h{[b! � ∗e?.fail]}(h,1)

Note that the compilation schemata given may lose completeness since they all per-
form synchronisation every time a value is to be read. For example, the compilation of
(c, 2)@k.(c@1)@k results in two synchronisations, which means that although location
k may have output 2 followed by 1 on channel c, by the time the second sychronisa-
tion takes place, the value 1 may have been missed by the monitor. There are however
ways around this within the calculus itself; for instance, in the case of orchestration and
migrating-monitor strategies, a more complete approach would be not to synchronise if
the location remains unchanged. Both schemata would thus replace a synchronisation
with location k followed by a monitoring term M (where curr is a free variable in M)
with the following:

tmp?curr.if k = curr then M else (sync(k).new tmp�.
�
tmp�!k � tmp�?curr.M)

�

The respective adjustments for the choreographed approach are slightly more in-
volved and are outlined in [7]. The proofs in the next section can be adapted for these

35

www.manaraa.com

extensions.

4.3. Equivalence of Monitoring Strategies
In the previous section we have seen how different monitors can be obtained from

a regular expression. Formalising the monitors in terms of mDPɪ allows us to analyse
them for correctness. One can prove their correctness in that a monitor synthesised
from a regular expression matches exactly the strings covered by the regular expression.
Another important question is that of relative correctness — are monitors produced via
different synthesis techniques equivalent modulo locality of monitoring? We focus
on the latter question, since it allows us to illustrate the use of mDPɪ bisimulation
techniques to the utmost. In this section we thus prove this relative correctness result
for the three monitoring strategies presented.

The main results, given in theorems 2 and 3, state that given any regular expres-
sion E, the derived orchestrated, migrating and choreographed monitors obtained for
the expression (i.e. monitorM(E), monitorM(E) and monitorC(E)) are bisimilar. The
equivalence results follow by inductively (over the structure of the regular expression)
proving how the compilation schemas compileO, compileM and compileb→e

C are related
to each other.

We start by relating orchestrated and migrating monitoring approaches.

Lemma 2. The orchestrated and migrating monitor compilation of an expression E are
bisimilar, assuming bisimilar continuations M and M�. If δ� |= k{[M]}(k,i) ≈ h{[M�]}(k,i),
then:

δ |= l{[compileM(E,M)]}(l, j) ≈ h{[compileO(E,M�)]}(l, j)

Proof. By induction on the structure of E, where each case is proven by showing co-
inductively that the respective compilations are bisimilar. The resulting monitors for
base case, E = (c, v)@k, are almost identical, apart from (i) an additional go k in
case of the migrating monitor compilation, and (ii) differences in starting location:
the additional migration move for (i) is a silent action which can be matched by an
empty move by the orchestrated monitor, whereas the location discrepancies of (ii) are
(purposefully) not reflected in the labels of the LTS.

The inductive cases follow easily from bisimulation equivalences obtained from
the inductive hypotheses and Theorem 1 (Contextuality). For example, consider the
compilations for E∗. We are hence required to prove that

δ |= l{[new s, f .(∗s?.compileM(E, f !) � ∗ f ?.s!.M � f !)]}(l, j) ≈
G{[new s, f .(∗s?.compileO(E, f !) � ∗ f ?.s!.M � f !)]}(l, j)

It is trivially true that δ� � k{[f !]}(k,i) can act identically to δ� � G{[f !]}(k,i). By the in-
ductive hypothesis we hence infer that δ |= l{[compileM(E, f !)]}(l, j) ≈ G{[compileO(E, f !)]}(l, j).

It can also be shown that δ |= l{[∗ f ?.s!.M]}(l, j) ≈ G{[∗ f ?.s!.M]}(l, j), since M and
M� are bisimilar and differences in monitor location are not reflected in the LTS.
Hence, using the contextuality of ≈ shown in Theorem 1, we can infer the bisimi-
larity under δ of new s, f .(l{[compileM(E, f !)]}(l, j) � l{[∗ f ?.s!.M]}(l, j) � l{[f !]}(l, j)) and
new s, f .(G{[compileO(E, f !)]}(l, j) � G{[∗ f ?.s!.M]}(l, j) � G{[f !]}(l, j)), from which the de-
sired result follows. The cases for E1 + E2 and E1.E2 are analogous. �

36

www.manaraa.com

This theorem enables us to prove the equivalence of monitorM(E) and monitorO(E):

Theorem 2. The migrating monitor and orchestrated compilations of a regular expres-
sion E are bisimilar:

δ |= monitorM(E) ≈ monitorO(E)

The proof of Theorem 3 is more complex as static choreography relies on trig-
gers. We therefore employ an intermediary modified version of a “triggered” orches-
tration to make Lemma 3 go through9. Proper orchestration can be then recovered
using Lemma 4.

We now turn our attention to relating choreographed and orchestrated compilation.

Lemma 3. For a continuation M, the choreographed compilation of a regular expres-
sion E without initial triggering is bisimilar to a “triggered” orchestrated compilation:

δ |= new e.(compileb→e
C (E) � h{[∗e?.M]}(h,1)) ≈ h{[∗b?.compileO(E,M)]}(h,1)

Proof. By induction on the structure of E, where each case is proved by showing
co-inductively that the respective compilations are bisimilar. Consider the case for
catenation E.F. The orchestrated compilation is

�
δ � h{[∗b?.compileO(E.F,M)]}(h,1)�,

which can be expanded to
�
δ � h{[∗b?.compileO(E, (compileO(F,M)))]}(h,1)�. By I.H. on

E this acts identically to
�
δ � new d.(compileb→d

C (E) � h{[∗d?.compileO(F,M)]}(h,1))
�
.

By I.H. on F and contextuality, this acts bisimilarly to
�
δ � new d.(compileb→d

C (E) �
new e.(compiled→e

C (F) � h{[∗e?.M]}(h,1)))
�

which, up to standard structural manipulation
of terms, ≡, (see [13]) is equivalent to

�
δ � new e.(compileb→e

C (E.F) � h{[∗e?.M]}(h,1))
�
.

Hence, for local clocks δ, we can show that

δ |= new e.(compileb→e
C (E) � h{[∗e?.M]}(h,1)) ≈ h{[∗b?.compileO(E,M)]}(h,1)

�

This result allows us to prove, together with co-induction, that triggering the mon-
itor once still gives the same result:

Lemma 4. The standard orchestrated compilation for E is bisimilar to a scoped,
“singly-triggered” orchestrated compilation :
δ |= h{[compileO(E,M)]}(h,1) ≈ new b.(h{[b!]}(h,1) � h{[∗b?.compileO(E,M)]}(h,1))

Finally, this result can be used to prove equivalence between choreographed and
orchestrated monitors.

Theorem 3. The choreographed and orchestrated compilations of a regular expression
E are bisimilar:

δ |= monitorC(E) ≈ monitorO(E)

9Trigger channels b, e, . . . used by compilations are always assumed to be fresh.

37

www.manaraa.com

Proof. By Lemma 3 and contextuality (using the context new b.
�
h{[b!]}(h,1) � −�) we

have

δ |= monitorC(E) ≈ new b.(h{[b!]}(h,1) � h{[∗b?.compileO(E, fail)]}(h,1))

and by Lemma 4 we have

δ |= new b.(h{[b!]}(h,1) �h{[∗b?.compileO(E, fail)]}(h,1) ≈ monitorO(E)

The required result then follows by transitivity of ≈. �

Theorems 2 and 3, together with transitivity of the bimulation relation allow us to
conclude that all three forms of monitoring are, in fact, pairwise equivalent.

4.4. Migrating Monitoring Preserves Locality
Although the monitoring approaches exhibit the same behaviour, there are reasons

for choosing one over another — primarily due to how the monitors are distributed
across locations. In the case of choreographed and agent migration approaches, this
should ensure that the monitors listen to channels locally.

A monitor’s intention to read a trace remotely can be inferred when it is syntac-
tically of the form δ � k{[q(c, x).M�]}(l,i), i.e. when its current location, k, and that
of monitoring context, l, do not match. We can thus inductively define the following
predicate over systems signalling remote trace violations through these rules.

k{[q(c, x).M�]}(l,i) →err
k � l

S →err

new c.S →err

S →err

S � U →err

S →err

U � S →err

Definition 3. A system S is said to be local, written local(S), if for any counter values
δ, err is not reachable from S :
local(S) � ∀δ¬

�
∃α1, . . . ,αn, δ�, S � such that δ � S

α1
==⇒ . . . αn

==⇒ δ� � S � where S �→err
�

Proposition 1. (i) Any system S which does not contain a sub-term of the form q(c, x).M�
is local i.e. local(S). (ii) Locality is, in some sense, contextual: local(S) and local(U)
implies local(S � U) and local(new c.S).

It is easy to show that orchestrated monitoring does not always preserve locality.
We can also prove that migrating and choreographed monitoring always occurs locally.

Theorem 4. There are regular expressions E for which ¬�local(monitorO(E))
�
.

Proof. By counter example. Consider the regular expression (c, v)@k, with k � h
where h is the global orchestration location. One can easily verify that the respective
compilation can transition into the following non-local system:

new d.
�

h{[q(c, x).if x = v then (fail � d!) else d!]}(k,δ(k)) � h{[∗d?.(. . .)]}(k,δ(k))
�
→err

�

38

www.manaraa.com

As before, we prove that locality is preserved for the compilation schemata compileM
and compileC , from which we can then conclude locality preservation by the monitors.

Lemma 5. Compiling regular expression E into a migrating monitor with a local con-
tinuation M yields a local monitor: local(h{[M]}(l,i)) implies local(compileM(E,M)).

Proof. By induction on the structure of E. The base case, (c, v)@k, yields the compiled
monitor

h{[go k.sync(k).new d.(s! �∗s?.(q(c, x).if x = v then (M � s!) else s!))]}(l,i)

which never produces an error since all queries are preceded by a single synchronising
operation sync(k), which is, in turn, preceded by a migration to that location, go k.

For the inductive case E + F, we need to show that err is not reachable from
k{[new d.(compileM(E, d!) � compileM(F, d!) � ∗d?.M)]}(l, j). From Proposition 1(i)
we know that local(k{[d!]}(l, j)) and local(k{[∗d?.M]}(l, j)) and by I.H. on E and F we
conclude local(k{[compileM(E, d!)]}(l, j)) and local(k{[compileM(F, d!)]}(l, j)). The result
follows from Proposition 1(ii). The other inductive cases are analogous. �

Similarly, for choreographed monitoring locality is preserved:

Lemma 6. Compiling a regular expression E into a choreographed monitor results in
a local monitor: local(compileb→e

C (E)).

Proof. By induction on the structure of E. The base case, (c, v)@k yields the monitor

k{[∗b?.read((c, v)@k, e!)]}(k,1)

which can be easily shown not to result in err.
For the inductive case of E + F, the compilation yields new c, d.

�
compilec→e

C (E) �
compiled→e

C (F) � h{[∗b?.(c! � d!)]}(h,1)�. One can show that this system is local by using
similar reasoning to that used for the respective inductive case of Lemma 5. The other
inductive cases are analogous. �

These two lemmata allow us to conclude locality of migrating and choreography-
based monitoring.

Theorem 5. Both migrating monitors and choreography-based monitoring guarantee
locality of monitoring: for any regular expression E, both local(monitorM(E)) and
local(monitorC(E)) hold.

Proof. We conclude that the migrating monitor compilation is local from Lemma 5
and the fact that local(k{[fail]}(k, j)). We conclude that the choreographed compilation is
local from Lemma 6, Proposition 1 (i) (for the outer plumbing code) and then Proposi-
tion 1(ii). �

39

www.manaraa.com

5. Discussion and Related Work

This paper formalises the distributed monitoring scenario, allowing for a compar-
ison of instrumentation strategies. This approach is somewhat different than other
frameworks presented in the literature, which typically focus on formalising and im-
plementing one particular strategy for a particular scenario.

Much work appearing in the field of runtime verification [19, 20] focusses on the
verification of techniques for the analysis of traces of events generated by the system.
The distinguishing features of the subset of work in the area focussing on distributed
systems are that (i) in a distributed setting, different locations generate separate traces,
and given that one usually lacks a global clock one has to make do with a limited notion
of consequentiality [16]; and (ii) beyond the question of how to instrument monitoring
code, one is faced with the question of where to instrument the code, since different
locations give rise to different communication behaviour. Since the contribution of
this work lies in these features, in this section we focus on related work on runtime
verification for distributed systems.

To the best of our knowledge, no other generic formal framework for reasoning
about issues such as monitor correctness and instrumentation strategies in a distributed
system setting appears in the literature. Even though there are numerous process cal-
culi that address locations and distribution — the closest to our work being [21, 13]
— none of these model trace generation and monitoring as part of the computation;
rather, traces are often a meta-construct aiding system analysis. The work by Zavat-
taro et al. [22, 23] studies more expressive contract languages for Service Oriented
Computing. Their aims differ from ours in that they are concerned with the analysis
of contract mechanisms such as error handling and compensations with respect to no-
tions of correctness such as service compliance. In contrast, our work focusses on the
instrumentation and monitoring, using contracts as a vehicle for explaining the issues
that arise in distributed settings.

DɪAɴ� [2] is one of the more formal attempts based on the actor model [24], adopt-
ing knowledge vectors (which extend vector clocks [14]) for monitoring causal prop-
erties of distributed systems. More specifically, this approach recognises the imprac-
ticality of monitoring distributed systems in a centralised fashion due to unreasonable
bandwidth overheads. To this effect, the framework adopts a pre-compiled monitor per
location, imposing a (reasonable) overhead on each across-border interaction, which is
exploited in order to share knowledge vector instances between monitors. Using a sim-
ple update strategy, the monitor on the receiving end is guaranteed to obtain the latest
known expression evaluations, extracting a causal order on remote events in the pro-
cess. By verifying causal assertions — a well-understood subset of temporal properties
— DɪAɴ� offers a more elegant solution towards the statically choreographed monitor-
ing of distributed architectures. However, this approach cannot handle dynamic archi-
tectures, since knowledge vectors are based on the assumption that contributing nodes
are known at compile time. It is for this reason that mDPɪ extracts temporal orderings
across locations by exploiting monitor execution, as opposed to underlying system in-
teractions as is the case with DɪAɴ�. One should also note that this latter framework
specifies causal properties through PT-DTL, a distributed extension to PT-LTL; a logic
with a proven track record in a runtime verification setting [25, 26, 20]. This points to

40

www.manaraa.com

the need for the study of more expressive logics within the setting of mDPɪ, and is left
as future work. Finally, it is worth noting that DɪAɴ� ignores the issue of data exposure
by sharing knowledge vectors across locations.

Two other tool-oriented frameworks include DMaC [6] and GEM [5]. The former,
an extension of the MaC [8] framework (originally developed for monolithic systems),
makes use of declarative networking techniques for verifying system behaviour against
formalised requirements. In order to do so, PEDL scripts (a language for defining prim-
itive events within the system) are exploited in order to convert MEDL (similar to past-
time Linear Temporal Logic) specifications to declarative queries, run over distributed
tables, and is hence choreography based. Although DMaC offers an implementation-
independent approach, it fails to offer solutions to the problem of asynchrony across lo-
cations. Moreover, the approach depends on cost-based optimisations for query place-
ment which remain unchanged during execution, a problem which is known to be NP-
hard — although various dynamic programming techniques and heuristics are used,
there is a risk of generating inefficient query plans resulting in unreasonable band-
width overheads. Issues of dynamic architectures and information confidentiality are
not addressed. GEM also deals with distributed monitoring, adopting an interpreted
rule-based language for monitoring temporal properties across locations. Crucially,
it assumes the availability of a global clock, relieving itself of substantial difficulties
inherent with the monitoring of distributed architectures. The framework offers basic
solutions to the loss of event orderings across locations, including the specification of
a tolerated limit on event delays per rule, keeping an event history in the meanwhile
(beyond which subsequent events are ignored). This is achieved by delaying the trig-
gering of rules for a specified amount of time, with the rule evaluated on the collected
event history. Clearly, these solutions are applicable due to the assumed synchrony
across locations. Although GEM allows for the loading of new rules at runtime (being
an interpreted language), it does not consider dynamic architectures. Moreover, local
pertinent events are disseminated to remote nodes, exposing information.

6. Conclusions

In this paper we presented mDPɪ, a location-aware calculus with explicit monitoring
capabilities, whilst internalising the local tracing of process behaviour. This calculus’
purpose is the formalisation of the distributed monitoring scenario, allowing for the
comparison of competing strategies. Apart from presenting mDPɪ’s syntax and LTS-
based semantics, we justify our approach in a number of ways:

1. We justify a bisimulation-based semantics for mDPɪ through the concept of com-
positionality, Theorem 1;

2. We provide orchestrated, choreographed and migrating monitor compilations for
a simple regular-expression based language, Section 4.1;

3. The three compilations are proved to be equivalent up to monitoring location, in
Theorem 2 and Theorem 3;

4. We prove that, with respect to this logic, migrating monitors and static-choreography
minimise information leaks by ensuring local monitoring, whereas orchestration
does not, Theorem 4 and Theorem 5;

41

www.manaraa.com

From the point of view of the migrating monitor strategy, these results formally jus-
tify it as equally expressive to existing distributed monitoring strategies, while giving
additional guarantees regarding potential information leakage through remote monitor-
ing. Needless to say, migrating monitors still does not solve the problem of information
leaks — for instance, the migration pattern of monitors and the content of the monitor
continuations could still be used to deduce information about the local events. While
the latter aspect can be addressed using standard encryption techniques10, the former
aspect poses an interesting challenge that can be tackled in future work.

We also plan to extend mDPɪ to address issues such as clock boundaries and real-
time operators, which will allow us to devise and study monitoring strategies that are
more complete. At present, the calculus also ensures that monitoring is non-intrusive,
in that it reads events from the system but does not otherwise interact with it. To be
able to handle reparations triggered upon contract violation, and to express correctness
through monitor-oriented programming [27], this constraint needs to be relaxed; this is
another direction we would like to explore in the future.

References

[1] F. Barbon, P. Traverso, M. Pistore, M. Trainotti, Run-time monitoring of instances
and classes of web service compositions, in: ICWS ’06: Proceedings of the IEEE
International Conference on Web Services, IEEE Computer Society, Washington,
DC, USA, 2006, pp. 63–71.

[2] K. Sen, A. Vardhan, G. Agha, G. Roşu, Efficient decentralized monitoring of
safety in distributed systems, International Conference on Software Engineering
(2004) 418–427.

[3] T. S.Cook, D. Drusinksy, M.-T. Shing, Specification, validation and run-time
moniroting of soa based system-of systems temporal behaviors, in: System of
Systems Engineering (SoSE), IEEE Computer Society, 2007.

[4] I. H. Krüger, M. Meisinger, M. Menarini, Interaction-based runtime verification
for systems of systems integration, Computer Science and Engineering Depart-
ment, University of California, San Diego USA.

[5] M. Mansouri-Samani, M. Sloman, Gem: a generalized event monitoring language
for distributed systems, Distributed Systems Engineering 4 (2) (1997) 96–108.

[6] W. Zhou, O. Sokolsky, B. T. Loo, I. Lee, Dmac: Distributed monitoring and
checking., in: Runtime Verification 09, Vol. 5779 of LNCS, Springer, 2009, pp.
184–201.

10For example, the continuations can be encrypted with the public key of the next listener, and signed for
authenticity.

42

www.manaraa.com

[7] A. Francalanza, A. Gauci, G. J. Pace, Distributed system contract monitoring, in:
Fifth Workshop on Formal Languages and Analysis of Contract-Oriented Soft-
ware (FLACOS’11), Vol. 68 of Electronic Proceedings in Theoretical Computer
Science (EPTCS), 2011.

[8] M. Kim, S. Kannan, I. Lee, O. Sokolsky, M. Viswanathan, Java-mac: a run-time
assurance tool for java programs, in: In Runtime Verification 2001, volume 55 of
ENTCS, Elsevier Science Publishers.

[9] D. Chappell, Enterprise Service Bus, O’Reilly Media, 2004.

[10] L. Lamport, Proving the correctness of multiprocess programs, IEEE Trans.
Softw. Eng. 3 (1977) 125–143.

[11] D. E. Denning, An intrusion-detection model, IEEE Transactions on Software
Engineering 13 (1987) 222–232.

[12] C. Abela, A. Calafato, G. J. Pace, Extending wise with contract management, in:
WICT 2010.

[13] M. Hennessy, A Distributed Pi-Calculus, Cambridge University Press, New York,
NY, USA, 2007.

[14] C. Fidge, Timestamps in message-passing systems that preserve the partial or-
dering, in: Proceedings of the 11th Australian Computer Science Conference,
Vol. 10, 1988, pp. 56–66.

[15] D. Sangiorgi, D. Walker, π-Calculus: A Theory of Mobile Processes, Cambridge
University Press, New York, NY, USA, 2001.

[16] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Commun. ACM 21 (7) (1978) 558–565.
doi:http://doi.acm.org/10.1145/359545.359563.

[17] U. Sammapun, O. Sokolsky, Regular expressions for run-time verification, in:
Proceedings of the 1st International Workshop on Automated Technology for Ver-
ification and Analysis (ATVA’03), Taipei, Taiwan, 2003.

[18] K. Claessen, G. J. Pace, An embedded language framework for hardware compi-
lation, in: Designing Correct Circuits ’02, Grenoble, France, 2002.

[19] S. Colin, L. Mariani, Run-time verification, in: Model-Based Testing of Reactive
Systems, Springer, 2004, pp. 525–555.

[20] M. Leucker, C. Schallhart, A brief account of runtime verification, Journal of
Logic and Algebraic Programming 78 (5) (2009) 293–303.
URL http://dx.doi.org/10.1016/j.jlap.2008.08.004

[21] M. Berger, K. Honda, The two-phase commitment protocol in an extended pi-
calculus, in: L. Aceto, B. Victor (Eds.), Electronic Notes in Theoretical Computer
Science, Vol. 39, Elsevier, 2003, proc. of EXPRESS’00.

43

www.manaraa.com

[22] M. Bravetti, G. Zavattaro, A theory of contracts for strong service compliance,
Mathematical. Structures in Comp. Sci. 19 (3) (2009) 601–638.

[23] C. Guidi, I. Lanese, F. Montesi, G. Zavattaro, On the interplay between fault
handling and request-response service invocations, in: ACSD, IEEE, 2008, pp.
190–198.

[24] G. Agha, Actors: a model of concurrent computation in distributed systems, MIT
Press, Cambridge, MA, USA, 1986.

[25] H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-based runtime verification,
Springer, 2004, pp. 44–57.

[26] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, O. Sokolsky, For-
mally specified monitoring of temporal properties., in: ECRTS, IEEE Computer
Society, 1999, pp. 114–122.

[27] F. Chen, G. Roşu, Towards monitoring-oriented programming: A paradigm com-
bining specification and implementation, in: Runtime Verification (RV’03), Vol.
89(2) of ENTCS, 2003, pp. 108 – 127.

Appendix A. Bisimulation Proof for Example 9

In example 9, we looked at monitors Morch and Mchor (as defined in Example 3)
when monitoring a system Sys (as defined in Example 1). When subject to the local
clocks δ = {l �→ j, k �→ i} we wanted to show their bisimilarity:

δ |= (Sys � Morch) ≈ (Sys � Mchor)

By Theorem 1, in order to show this it suffices to show:

δ |= Morch ≈ Mchor

This can in turn be proved by constructing the witness family of relations over
systems indexed by clocks below (we here denote them as a single relation over triples
Cʟ���� × Sʏ� × Sʏ�). This relation assumes the following definitions:

Mo � q(d, x).sync(l). q(x, y). if y < 2 then fail
Mo

1 � sync(l). q(x, y). if y < 2 then fail
Mo

2 � q(x, y). if y < 2 then fail
Mo

3 � if y < 2 then fail

Mk � q(d, x). b!x

Ml � b?x. sync(l). q(x, y). if y < 2 then fail

The witness relation shown in Figure A.9 is made up of six groups of triples, and
assumes the following ordering amongst local clocks:

δ� ≤ δ � dom(δ�) = dom(δ) ∧ (k ∈ dom(δ)⇒ δ�(k) ≤ δ(k))

44

www.manaraa.com

The first group of triples describe the unsuccessful queries of trace records by the re-
spective monitors through actions inT(cg, vg, k, g) derived using rule S��, preceded by
a series of τ-transitions increasing the local counters through rule Cɴ�ʀ; every unsuc-
cessful query increases the trace monitor index of the respective monitor and introduces
the respective trace record queried as part of the system.

The second group of triples describe the successful querying of a trace record at in-
dex (k, j�) and are transitioned to from triples of the first group through inT(cg, vg, k, g)
actions derived using rule IɴT. The third group relates the communication on the
scoped channel b from the choreographed monitor with a no-transition from the or-
chestrated monitor side. Again, the fourth group describes unsuccessful trace record
queries at location l, which then transition to the fifth group of triples once a successful
query is made. Finally, the sixth group of triples describe the possible branches that the
monitor condition may take, based on the value inputted from the trace record queried.

45

www.manaraa.com

�
δ�, m{[Mo]}(k,i�+1) � Tk,

new b.(k{[Mk]}(k,i�+1) � l{[Ml]}(l,h)) � Tk

�
���������

δ� > δ, i� < δ�(k),
Tk �

�i�
g=i k�t(cg, vg, g)�

∀g s.t. i ≤ g ≤ i�. cg � d

�
δ�, m{[Mo

1{v/x}]}(k,i
�+1) � T � Tk,

new b.(k{[b!v]}(k,i�+1) � l{[Ml]}(l,h)) � T � Tk

�
�����������

δ� > δ, i� < δ�(k),
Tk �

�i�−1
g=i k�t(cg, vg, g)�

∀g s.t. i ≤ g < i�. cg � d
T � k�t(d, v, i�)�

�
δ�, m{[Mo

1{v/x}]}(k,i
�+1) � Tk,

l{[Mo
1{v/x}]}(l,h) � Tk

� ������
δ� > δ, i� < δ�(k),
Tk �

�i�
g=i k�t(cg, vg, g)�

�
δ�, m{[Mo

2{v/x}]}(l, j
�+1) � Tk � Tl,

l{[Mo
2{v/x}]}(l, j

�+1) � Tk � Tl

�

���������������

δ� > δ, i� < δ�(k),
j�� ≤ j� < δ�(l),
Tk �

�i�
g=i k�t(cg, vg, g)�

Tl �
� j�

f= j�� l�t(d f , v f , f)�
∀ f s.t. j�� ≤ f ≤ j�. d f � v

�
δ�, m{[Mo

3{v/x}{w/y}]}(l, j
�+1) � Tk � T � Tl,

l{[Mo
3{v/x}{w/y}]}(l, j

�+1) � Tk � T � Tl

�

�����������������

δ� > δ, i� < δ�(k),
j�� ≤ j� < δ�(l),
Tk �

�i�
g=i k�t(cg, vg, g)�

Tl �
� j�−1

f= j�� l�t(d f , v f , f)�
∀ f s.t. j�� ≤ f < j�. d f � v
T � k�t(v,w, j�)�

�
δ�, m{[M]}(l, j�+1) � Tk � Tl,

l{[M]}(l, j�+1) � Tk � Tl

�

���������������

δ� > δ, i� < δ�(k),
j�� ≤ j� < δ�(l),
Tk �

�i�
g=i k�t(cg, vg, g)�

Tl �
� j�

f= j�� l�t(d f , v f , f)�
M = fail or M = stop

Figure A.9: Bisimulation triples

46

